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Probleme

A-FExemples de suites de parties décimales

Le but de cette partie est de se familiariser avec les notations introduites en étudiant tout d’abord un exemple de
suite qui n’est pas dense dans [0,1[. Dans la question 3., on met en évidence un critére qui garantit que certaines
suites, dites a croissance lente, sont denses dans [0, 1].

1. Pour tout z € R, on a :

r—1l<|z|<ze =< —-|zJ]<l-ze0<zx—|z]<1

Ve eR, M(x) € [0,1]

2. (a) Soit z € Z. Pour tout n € N, on a nx € Z, d’ou :

ii.

iii.

ii.

Up = M(nx) =nz — |nx| =nzx —nx =0

Six € Z, alors (uy) est la suite nulle

i. On a les premiers termes de la suite u,, :

n 0] 1 2 3 4 15| 6 7 8 9 |10 11
u, |010,410,8/0,2|0,6/0(0,4/0,8{0,2|0,6| 0 |0,4

2
La suite (uy) semble étre périodique, avec une période de longueur 5 : 0, R

Soit n € N, il s’agit de démontrer que up1q = u,. On a :

Unig = (n+ )% — L(?H(J)EJ =n? +p- WBHDJ =n® 4 p- LnEJ —p=n® - WEJ = U
q q q q q q q q

La suite (u,) étant périodique de période ¢, elle prend au plus ¢ valeurs distinctes (exactement ¢

valeurs si p et ¢ sont premiers entre eux). Il est clair qu’il est possible de trouver, dans I'intervalle
2i 21 +1 ]

2(g+1)"2(¢g+1)

[0,1], ¢+ 1 intervalles non triviaux et disjoints par exemple la famille d’intervalles [

oul<1i<gq.
Etant donné que la suite (uy) prend au plus ¢ valeurs, il y aura I'un de ces ¢ + 1 intervalles qui ne
contiendra pas de terme de la suite (uy,). Ce qui démontre que (u,) n’est pas dense dans [0, 1].

Si z € Q alors la suite (M (nx)) n’est pas dense dans [0, 1]

i. La suite (n?) est croissante et tend vers +oo mais (n + 1)? — n? = 2n + 1 ne tend pas vers 0.

(n?) n’est pas & croissance lente

La suite (v/n) est croissante et tend vers +oo. Pour tout n € N, en utilisant la quantité conjuguée, il
vient :

(n+1)—n 1
vn+1l—+/n= = —
v vVn+1l+yvn  n+14/nnotoo

(v/n) est & croissance lente

0
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iii. La suite (In(n)),>1 est croissante et tend vers +oo. Pour tout n € N, on a :

oy

ln(n+1)—ln(n):ln(n+1> :ln(1+l) 0

n n/ n—+oo

(In(n))n>1 est a croissance lente

(b) i. Clest exactement la définition de liril (an+1 — ap) = 0, étant donné que a < b, on a bien £ > 0.
n—-+0o0

ii. La suite (a,) tend vers +oo, d’ou I'existence de N’ > N tel que upr > A+ 1.

iii. L’idée est la suivante : ay < A par définition de A et ayr > A+ 1 avec N’ > N. Or, a partir du rang
N, la différence entre deux termes consécutifs de la suite (a,) est inférieure ou égale a ¢, la suite étant
croissante, il y aura nécessairement un terme de la suite qui va tomber dans l'intervalle [A + a, A + b]
puisque cet intervalle est de longueur 2. Ainsi il existe ng € N tel que ap, € [A+a, A+ b].

—

Vous aurez remarqué que l’hypothese de croissance de la suite (ay,) clarifie la situation mais n’est pas
nécessaire.
iv. Comme A est un entier, que 0 < a < b <1 et que a,, € [A+a,A+b],on a |ay,| = A. Ainsi :

A+a<ap, <A+bs A+a—A<an, — |an) <A+b—A<sa< M(ap,) <b

En résumé, pour tous (a,b) € [0,1[% tels que 0 < a < b < 1, on a trouvé ng € N tel que M(ay,) € [a,b],
ceci est la définition de :

(M (ay)) est dense dans [0, 1]

v. D’apres la question 3.(a), les suites (v/n) et (In(n)),>1 sont a croissance lente, ainsi (M(y/n)) et
(M(In(n))) sont deux suites denses dans [0, 1].

B-Spectre d’un nombre réel
1. (a) Pourz=1etneN* ona|nz|=|n|=n

Sp(l) = N*

1 1
(b) Pour x = = et n € N*, on a [2nz| = |n] = n. On a montré ainsi que N* C Sp(i) et réciproquement
1
sp(5) c N~
P\5) ©

Sp(5) =N
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2.

()

(d)

(a)

(b)

()

Pour z =3 et n € N*, on a [nz| = [3n] = 3n. On en déduit que :

Sp(3) = {3n, n € N*} = 3N*

5
Soit x = 3 Soit n € N*, il y a deux cas & considérer :
e si n est pair, il existe p € N* tel que n = 2p et dans ce cas :
lnz| = [5p] = 5p

e si n est impair, il existe ¢ € N tel que n = 2¢ + 1 et dans ce cas :

nz| = g(2q+ 1] =5¢+2

On en déduit que :

Sp(g) ={5p, pe N} U{5¢+2, ¢ €N}

Par définition, le spectre de = est égal a I'image de f,.

Sp(x) = Im(fac) = fx(N*)

i. Soit « €]0,1[, on a :

mr<m-—1&m>

1—=x

Ainsi, il est possible de choisir m € N* tel que ma < m — 1. Dans ce cas, fz(m)= |mz| <m —2, en
effet un réel strictement inférieur a m — 1 posséde une partie entiere inférieure ou égale a m — 2.

ii. On suppose que f, est injective, démontrons par récurrence sur n € N* :

Hy ¢ fo(n) >n—1

e Initialisation. Pour n =1, on a f;(1) = |z] =0 car z €]0,1[. On a bien f;(1) > 0.

e Hérédité. On suppose H,, vraie pour n € N* fixé. On a donc fz(n) >n—1.On anx < (n+ 1)x
et par croissance de la fonction partie entiere f,(n) < fz(n + 1). Cependant comme f, est supposée
injective, on a forcément f,(n) < fz(n+ 1), ce qui donne f,(n+ 1) > n — 1 mais comme ce sont des

entiers : fz(n+ 1) > n. Ce qui démontre que H,1 est vraie et termine la récurrence.

iii. Les deux résultats obtenus dans les deux questions précédentes sont clairement contradictoires, on en

déduit que f, n’est pas injective.

Soit p € N, on cherche donc un entier n € N* tel que :

1
Pen<®y-

p<nr<p+1é& -
x T x

On voit que l'on peut choisir n = {BJ + 1 puisque ’on aura bien :
T
E<|Bl+1<24 -
x x T

1
ceci car z €]0,1] donc — > 1.
T

On en déduit que f;(n) = |nx| = p puisque p < nx < p+ 1. L’entier p € N étant quelconque, on en déduit

que f, est surjective.
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3.

(d)

(a)

D’apres la question précédente, f, étant surjective, on a :

Sp(z) = N*

Soit > 1 et n € N*, montrons que fy(n+1) > fz(n). On a:
I(n+Dz]>n+Dz—1=nr+z—1>nz > |nz|
On en déduit que f, est strictement croissante donc elle ne prend pas deux fois la méme valeur et :

fz injective

Pour n € N* et > 1, il est clair que nx > 1 ainsi f,(n) > 1 et on voit alors que 0 n’a pas d’antécédent

par fz.
fz non surjective.

e Déja, si & > 2, pour tout n € N*, on a [nx| > 2n. Ainsi dans lintervalle [1,2n], il y a au moins n
entiers qui n’appartiennent pas au spectre de x. Ceci étant valable pour tout n € N*, il y a bien une infinité
d’entiers strictement positifs ne faisant pas partie du spectre de x.

e Soit x €]1,2], il est possible d’écrire x = 1 + r avec r €]0, 1[. Soit j € N*, on considére un entier N € N*

tel que Nr > j, cet entier existe bien car Nlim Nr = 400. On a alors No = N + Nr > N + j donc par
—+00

croissance de la partie entiere | Nz| > N + j. Ainsi, dans l'intervalle [1, N + j], il y a au moins j entiers
qui n’appartiennent pas au spectre de x. Ceci étant valable pour tout j € N*, on en déduit qu’il y a encore
dans ce cas une infinité d’entiers n’appartenant pas au spectre de x.

Si z > 1 alors le complémentaire du spectre de x est infini I

Pour démontrer que Sp est injective, il s’agit de prendre deux réels strictement positifs x et y avec par
exemple z < y et de montrer que Sp(z) # Sp(y). Comme R est archimédien, il existe N € N* tel que
N(y —x) > 1, c’est-a-dire Ny > Nz + 1. Ce qui implique [Ny| > | Nz|. Ainsi Sp(y) contient moins de
N éléments inférieurs ou égaux a | Nz| tandis que Sp(z) contient N éléments inférieurs ou égaux a | Nz |.
On en déduit que les spectres de x et y sont distincts.

Sp est injective I

L’application Sp n’est clairement pas surjective car pour x > 0, il est clair que lir+n nr = +o0o. On en
n—-+0oo

déduit que Sp(x) n’est pas bornée. Une partie finie de N* n’aura pas d’antécédent par ’application Sp.

Sp n’est pas surjective.

On a Sp(4) = {4n, n € N*} et Sp(10) = {10n, n € N*}. Or pour p € N* :

4|p et 10|p < 20[p

On a donc :

Sp(4) N 5p(10) = Sp(20)
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(b) Soit (a,b) € (N*)?, comme dans la question précédente Sp(a) est I'ensemble des multiples strictement
positifs de a et Sp(b) est I'ensemble des multiples strictement positifs de b. De méme, par définition du
ppcm de a et b que 'on note a A b, pour tout p € N* :

alp et blp < (a A b)|p

On en déduit que :

Sp(a) N Sp(b) = Sp(a Ab)

C-Théoreme de Beatty

1. (a) Pour une partition, nous devons avoir par définition :

e Sp(a) # 0 et Sp(b) # 0.
e Sp(a) U Sp(b) = N*.
e Sp(a) N Sp(b) = 0.
(b) i. On peut prendre A = {1} et B = N*"\ {1}.
ii. On peut choisir A = 2N* (les entiers naturels pairs non nuls) et B = N*\ A.

(¢) Prenons le nombre irrationnel le plus simple que nous connaissons a = V2. L’énoncé demande explicitement
de démontrer que V2 est irrationnel, il s’agit de restituer la preuve vue dans le chapitre 2. Pour ce choix
de a, nous avons :

1 11 1 5)

1
-+
a a b V2 V2 -1

S| o=

Cette valeur trouvée est irrationnelle, en effet si 'on suppose par l'absurde que V2 4+ 2 = r € Q alors
V2 =17 —2¢eQ ce qui n'est pas le cas.

a=+v2etbh=+v2+2

2. (a) Avec I'encadrement fourni dans I’énoncé, on trouve les premiers entiers du spectre de v/2 :
1,2,4,5,7,8,9,11,12, 14
Ainsi :
u1(V2) = 1, ua(V2) = 2, uz(V2) =2, ua(v2) =3, uz(v2) =4
ug(V2) = 4, uz(V2) = 5, ug(V2) = 6, ug(v2) =7, u1o(vV2) =7
(b) i. Soit (k,1) € (N*)? avec k > . En utilisant a > 1, on a :
ka—la=(k—la>k—-1>1

On en déduit que :
lla] <la <ka—1< |ka]

Ce qui montre bien que |ka] # [la].
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ii. Soit n € N*, 'ensemble {k € N, |ka| < n} est une partie de N, non vide car ayant 0 pour élément et
majorée par n donc elle possede un maximum que l’on note p.

e Par définition du maximum, nous avons [pa| < n. Or pa — 1 < |pa] donc pa < n + 1 et en divisant
par a > 0, nous obtenons bien :

n—+1
<

e Toujours par définition du maximum, p + 1 n’appartient pas a 'ensemble donc [(p + 1)a| > n et
comme ce sont des entiers |(p+1)a] > n+1. D’autre part, |(p+1)a| < (p+1)a. Ainsi, nous obtenons
n+1<(p+1)a et en divisant par a > 0 :

»> n+1 1
Finalement, nous obtenons I'inégalité voulue :
1 1
n+1 1 <p< n+

a

iii. Soit n € N* et n > a. On note toujours p = max{k € N, |ka| <n}. Onap >1cara > 1. Onen
déduit que :
[1,n] N Sp(a) ={k € N*, |ka|] <n}={|ka], k€ [1,p]}

Or les éléments de cet ensemble sont distincts d’apres la question i., ainsi :
tn(a) = Card([1,n] N Sp(a)) = p
L’inégalité de la question précédente, nous donne alors le résultat :

1 1
nt —lgun(a)<n+
a a

iv. On divise 'inégalité précédente par n € N* :

n—f—l_lgun(a) <n—|—1
na n n na

D’apres le théoreme d’encadrement, nous avons :

lim un(a)
n—+o00 n a

(c) Soit n € N*.

i. Par hypothese de I’énoncé, Sp(a) et Sp(b) forment une partition de N* donc Sp(a) U Sp(b) = N*. On
a par distributivité :

[1,n] = [1,n] NN = [1,n] N (Sp(a) U Sp(b)) = ([1,n] N Sp(a)) U ([1,n] N Sp(b))
ii. Par définition d’une partition, on a Sp(a) N Sp(b) = () ainsi :
([1,n] 0 Sp(a)) N ([1,n] N Sp(b)) = [1,n] N Sp(a) N Sp(b) =0

iii. Finalement, avec les deux questions précédentes, [1,n] N Sp(a) et [1,n] N Sp(b) sont disjoints et leur
union vaut [1,n]. On en déduit que :

n = Card([1,n]) = Card([1,n] N Sp(a)) + Card([1,n] N Sp(b)) = up(a) + u,(b)

Pour tout n € N* :
n = up(a) + u,(b)
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iv.

ii.

On divise par n € N* :

D’apres la question b), ces deux suites convergent donc en passant a la limite :

L]
Ca b

a
i. On suppose par 'absurde que — = P avec p € N* et ¢ € N* (puisque a > 1 et b > 1). Ainsi ga = pb

b
et donc |ga] = [pb]. On en déduit que |ga| € Sp(a) N Sp(b). C’est absurde car Sp(a) et Sp(b) sont
disjoints.
On en déduit que % est irrationnel.

On a :
L
o b b ¢

D’apres la question précédente, cela implique que a — 1 est irrationnel et donc a irrationnel.

1 1 1
Enfin, si par I’'absurde b est rationnel alors — = 1 — = donc — est rationnel et par suite a est rationnel,
a a

ce qui n’est pas le cas.

a et b sont irrationnels '

3. (a) Supposons par l'absurde que k € Sp(a) N Sp(b).

i.

ii.

iii.

Par définition du spectre de a, si k € Sp(a) alors il existe m € N* tel que k = |ma]. De méme, comme
k € Sp(b), il existe n € N* tel que k = |nb].

D’apres la question précédente et I’encadrement usuel sur la partie entiere, nous avons :

ma—1<k<maetnb—1<k<nb

Il reste a justifier que les deux inégalités larges sont en réalité des inégalités strictes. Par 'absurde, si

k = ma alors a = — € Q. On sait que a est irrationnel donc c’est contradictoire. De méme, k = nb

m
est impossible également. Finalement, les inégalités sont strictes et ’on a bien :
ma—1<k<maetnb—1<k<nb

On divise par a > 0 et b > 0 les inégalités précédentes pour obtenir :

1 k 1 k
m——-—-<—-<metn——-—<-<n
a a b b

1
Puis 'on somme ces deux inégalités en utilisant la relation — + 7= 1:
a

m+n—1<k<m+n

Cette inégalité est contradictoire puisque m, n et k sont des entiers. On en déduit que :

Sp(a) N Sp(b) =0
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(b) Soit k € N*. On pose i = {SJ et j = LﬁJ

i.

ii.

iii.

b
On suppose que k ¢ Sp(a). Par définition de 4, nous avons :

.k
1< —-<i+4+1
a

ce qui donne :
ia<k<ia+a

Affinons cette inégalité pour obtenir celle de I’énoncé :

k
e Si k =ia alors a = — € Q ce qui est absurde car a est irrationnel (i étant bien non nul car k non
i
nul). Ainsi ia < k.
e D’autre part, on va démontrer que k£ < ia + a — 1 sachant que k < ia 4+ a. Pour cela raisonnons par
Pabsurde en supposant que ia+a—1 < k < ia+a alors k <ia+a < k+1. Mais ia+a = (i+ 1)a n’est

pas un entier car a est irrationnel donc on en déduit que [ia + a] = k. Il en découle que k € Sp(a) ce
qui est contradictoire avec I’hypothese de la question.

Finalement, si k ¢ Sp(a) alors ia < k < ia +a — 1.
Sik ¢ Sp(a) et k ¢ Sp(b) alors en appliquant la question précédente, il vient :

la<k<ia+a—letjb<k<jb+b—-1

1 1
On divise la premiere inégalité par a et la deuxiéme par b et ’on somme en utilisant — + b= 1 pour
a
obtenir :
i+j<k<i+j+1
L’inégalité ci-dessus est contradictoire car i, j et k sont des entiers. On en déduit qu’il est impossible
de trouver un entier k£ qui n’est pas dans Sp(a) U Sp(b). D’otut :

Sp(a) U Sp(b) = N*

Or d’apres la question 3., on a Sp(a) N Sp(b) # 0 et puisque Sp(a) et Sp(b) ne sont pas vides, toutes
les conditions sont finalement réunies pour en déduire que :

Sp(a) et Sp(b) forment une partition de N*

Ce qui termine totalement la preuve et démontre le théoreme de Beatty.

4. (a) L’équation caractéristique est X 2_ X —1 =0 qui a pour solutions ¢ et, puisque le produit des solutions

1
vaut —1, I'autre solution est ——. D’apres le cours, on sait que :
¥

3(A,B) eR%VneN, F, = Ax " + B x (_l)”
v

On trouve A et B avec les conditions initiales :

A A A= 1
= 1 = 1 =
=1 Ap—B—=1 A((p—*>:1 B__L
2 2 - V5
Finalement :
1 n —n
n e, Fu=—2(¢" = (=9)")
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(b)

()

1+

s

3 +2\/5. Ces deux nombres

Par résolution de 1’équation, on trouve ¢ = et on calcule p? = p41 =

sont bien irrationnels car si, par I’absurde, ¢ = r € Q alors V5 =1—2r € Q ce qui est contradictoire
d’aprés Pénoncé. On procede de méme pour ¢?. Pour appliquer le théoréme de Beatty, il reste & vérifier

que :
1 1 p+1
7+7: =
o @2 ©?

1

On en déduit que :

Sp(p) et Sp(p?) forment une partition de N*

1

1
Si Sp(a) et Sp(a?) forment une partition de N* toujours en utilisant le théoréme de Beatty, on a — + — =1
a a

Cette équation est équivalente & a® +a+1 = 0, ainsi a = en excluant 'autre solution

qui

est négative.

Si Sp(a) et Sp(a?) forment une partition de N* alors a = ¢

D-Jeu de Wythoff

D’apres la question 4.(a) de la partie C, on a ¢ = ¢ + 1. Pour n € N*, on a :
vn = l¢’n] = [(p+1)n]| = [pn+n] = [pn] +n=u,+n

Vn € N¥, Un—un:nl

Notons (z,y) 1’état du jeu a un instant donné. Lorsque I'un des joueurs préleve des jetons, nous obtenons
un nouvel état (2',y’). Cependant 2’ + 3 < x + y puisqu’au moins un jeton a été pris dans au moins une
pile. La suite des sommes des nombres de jetons des deux piles est une suite d’entiers naturels strictement
décroissante. Cependant, il n’existe pas de suite infinie d’entiers naturels strictement décroissante : le jeu
comporte un nombre fini d’étapes.

Si l’état est (3,4) et que I'on préleve 2 jetons dans chaque pile, nous passons a ’état (1,2). Notre adversaire
doit alors jouer, les états possibles qu’il peut atteindre sont : (0,2), (1,1) et (0,1). Ces trois états constituent
des situations dans lesquelles nous pouvons gagner directement.

2. On suppose que 'état (x,y) est configuré, c’est-a-dire qu’il existe n € N* tel que = = u,, et y = v,. Examinons
les différents coups possibles :

e s0it on préléve un méme nombre de jetons aux deux piles, le nouvel état est noté (z',y’) avec 2/ < z et v/ < y.
Par I’absurde, si ce nouvel état est également configuré alors il existe p € N* tel que 2’ = uy, et y = vp. Puisque
l'on a retiré le méme nombre de jetons aux deux piles et en utilisant le résultat de la question 1.(a), on a :

p=v,—u,=y —2'=y—z=n

/ .
Dans ce cas * = u, = u, = 2, ce qui est absurde.

e soit on enléve des jetons A la plus petite pile, le nouvel état est noté (2',1') avec 2/ < x et y' = y. Si I'état
est encore configuré alors il existe p € N* tel que 2/ = uy et ¥’ = v,. On a y =y donc v, = v, dott n = p.
En effet, d’apres la question 3.(a) de la partie B, comme ©? > 1, la fonction fp2 est injective. Dans ce cas
¥ = u, = u, = x, ce qui est absurde.

e le raisonnement est identique si ’on enléve des jetons a la plus grande pile.

Si un état est configuré alors I’état suivant ne l'est pas'
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3. On suppose que 'état (z,y) n’est pas configuré. Si z = 0 ou y = 0 ou & = y, on se ramene a ’état configuré
(0,0) en un seul coup. On suppose dans la suite que 1 < z < y et on note n = y —x € N*. Nous allons considérer
deux cas :

e si x> u, alors la stratégie consiste & retirer  — u, jetons dans chaque pile. Le nouvel état (z’,7') est défini
par ' =2 — (x —uy) = up et ¥ =y — (x — up) = n + up = vy,. Ainsi état obtenu (z’,y") est bien configuré.

e on suppose a présent que r < u,. Les suites (uy)n>1 €t (v,)n>1 formant une partition de N*, on sait que z
est égal a 'un des termes de 'une de ces suites :

» s'il existe p € N* tel que = u, alors p < n car u, < u,. On choisit d’enlever o = y — v, jetons a
la pile en contenant y ainsi il y en aura ¢’ =y — a = v, et 2’ = z = u,. Ce qui fait que I'état (z/,y) est bien
configuré mais il faut vérifier tout de méme que o > 0 :

a=y—vp,=r+n—vp=n—p>0

> s’il existe ¢ € N* tel que = vy, on cherche « tel que y¥' = y — a = gy, on trouve a = y —uy > 0
car u, < vy = x < y. On préleve « jetons dans la pile de y et on garde 2’ = z. Le nouvel état (z',y') est alors
également configuré.

Si un état n’est pas configuré alors il est possible de jouer afin que I’état suivant le soit I

4. Si Iétat initial est configuré alors on laisse jouer notre adversaire en premier. D’apres la question 2., notre
adversaire nous laissera un état non configuré et en jouant nous pouvons obtenir un état configuré d’apres la
question 3. On répete ce procédé. Or le jeu se termine forcément et par un état configuré (0,0) ainsi nous
sommes certain de gagner car nos états peuvent toujours étre configurés et ceux de notre adversaire ne le seront
jamais.

Si I’état initial n’est pas configuré, on commence a jouer afin que I’état suivant soit configuré. C’est alors a notre
adversaire de jouer et ’on est ramené au premier cas.

Vous pouvez jouer a ce jeu en suivant ce lien : http ://jm.davalan.org/jeux/nim/wythoff/index.html.



