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Problème

A-Exemples de suites de parties décimales

Le but de cette partie est de se familiariser avec les notations introduites en étudiant tout d’abord un exemple de
suite qui n’est pas dense dans [0, 1[. Dans la question 3., on met en évidence un critère qui garantit que certaines
suites, dites à croissance lente, sont denses dans [0, 1[.

1. Pour tout x ∈ R, on a :

x− 1 < bxc ≤ x⇔ −x ≤ −bxc < 1− x⇔ 0 ≤ x− bxc < 1

∀x ∈ R, M(x) ∈ [0, 1[

2. (a) Soit x ∈ Z. Pour tout n ∈ N, on a nx ∈ Z, d’où :

un = M(nx) = nx− bnxc = nx− nx = 0

Si x ∈ Z, alors (un) est la suite nulle

(b) i. On a les premiers termes de la suite un :

n 0 1 2 3 4 5 6 7 8 9 10 11

un 0 0, 4 0, 8 0, 2 0, 6 0 0, 4 0, 8 0, 2 0, 6 0 0, 4

La suite (un) semble être périodique, avec une période de longueur 5 : 0,
2

5
,

4

5
,

1

5
,

3

5
.

ii. Soit n ∈ N, il s’agit de démontrer que un+q = un. On a :

un+q = (n+ q)
p

q
−
⌊
(n+ q)

p

q

⌋
= n

p

q
+ p−

⌊
n
p

q
+ p
⌋

= n
p

q
+ p−

⌊
n
p

q

⌋
− p = n

p

q
−
⌊
n
p

q

⌋
= un

iii. La suite (un) étant périodique de période q, elle prend au plus q valeurs distinctes (exactement q
valeurs si p et q sont premiers entre eux). Il est clair qu’il est possible de trouver, dans l’intervalle

[0, 1[, q+1 intervalles non triviaux et disjoints par exemple la famille d’intervalles
[ 2i

2(q + 1)
,

2i+ 1

2(q + 1)

]
où 0 ≤ i ≤ q.
Etant donné que la suite (un) prend au plus q valeurs, il y aura l’un de ces q + 1 intervalles qui ne
contiendra pas de terme de la suite (un). Ce qui démontre que (un) n’est pas dense dans [0, 1[.

Si x ∈ Q alors la suite (M(nx)) n’est pas dense dans [0, 1[

3. (a) i. La suite (n2) est croissante et tend vers +∞ mais (n+ 1)2 − n2 = 2n+ 1 ne tend pas vers 0.

(n2) n’est pas à croissance lente

ii. La suite (
√
n) est croissante et tend vers +∞. Pour tout n ∈ N, en utilisant la quantité conjuguée, il

vient :
√
n+ 1−

√
n =

(n+ 1)− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n
−→

n→+∞
0

(
√
n) est à croissance lente
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iii. La suite (ln(n))n≥1 est croissante et tend vers +∞. Pour tout n ∈ N, on a :

ln(n+ 1)− ln(n) = ln
(n+ 1

n

)
= ln

(
1 +

1

n

)
−→

n→+∞
0

(ln(n))n≥1 est à croissance lente

(b) i. C’est exactement la définition de lim
n→+∞

(an+1 − an) = 0, étant donné que a < b, on a bien ε > 0.

ii. La suite (an) tend vers +∞, d’où l’existence de N ′ ≥ N tel que uN ′ ≥ A+ 1.

iii. L’idée est la suivante : aN < A par définition de A et aN ′ ≥ A+ 1 avec N ′ ≥ N . Or, à partir du rang
N , la différence entre deux termes consécutifs de la suite (an) est inférieure ou égale à ε, la suite étant
croissante, il y aura nécessairement un terme de la suite qui va tomber dans l’intervalle [A+ a,A+ b]
puisque cet intervalle est de longueur 2ε. Ainsi il existe n0 ∈ N tel que an0 ∈ [A+ a,A+ b].

Vous aurez remarqué que l’hypothèse de croissance de la suite (an) clarifie la situation mais n’est pas
nécessaire.

iv. Comme A est un entier, que 0 ≤ a < b ≤ 1 et que an0 ∈ [A+ a,A+ b], on a ban0c = A. Ainsi :

A+ a ≤ an0 ≤ A+ b⇔ A+ a−A ≤ an0 − ban0c ≤ A+ b−A⇔ a ≤M(an0) ≤ b

En résumé, pour tous (a, b) ∈ [0, 1[2 tels que 0 ≤ a < b < 1, on a trouvé n0 ∈ N tel que M(an0) ∈ [a, b],
ceci est la définition de :

(M(an)) est dense dans [0, 1[

v. D’après la question 3.(a), les suites (
√
n) et (ln(n))n≥1 sont à croissance lente, ainsi (M(

√
n)) et

(M(ln(n))) sont deux suites denses dans [0, 1[.

B-Spectre d’un nombre réel

1. (a) Pour x = 1 et n ∈ N∗, on a bnxc = bnc = n.

Sp(1) = N∗

(b) Pour x =
1

2
et n ∈ N∗, on a b2nxc = bnc = n. On a montré ainsi que N∗ ⊂ Sp

(1

2

)
et réciproquement

Sp
(1

2

)
⊂ N∗.

Sp
(1

2

)
= N∗
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(c) Pour x = 3 et n ∈ N∗, on a bnxc = b3nc = 3n. On en déduit que :

Sp(3) = {3n, n ∈ N∗} = 3N∗

(d) Soit x =
5

2
. Soit n ∈ N∗, il y a deux cas à considérer :

• si n est pair, il existe p ∈ N∗ tel que n = 2p et dans ce cas :

bnxc = b5pc = 5p

• si n est impair, il existe q ∈ N tel que n = 2q + 1 et dans ce cas :

bnxc =
⌊5

2
(2q + 1)

⌋
= 5q + 2

On en déduit que :

Sp
(5

2

)
= {5p, p ∈ N∗} ∪ {5q + 2, q ∈ N}

2. (a) Par définition, le spectre de x est égal à l’image de fx.

Sp(x) = Im(fx) = fx(N∗)

(b) i. Soit x ∈]0, 1[, on a :

mx < m− 1⇔ m >
1

1− x
Ainsi, il est possible de choisir m ∈ N∗ tel que mx < m− 1. Dans ce cas, fx(m) = bmxc ≤ m− 2, en
effet un réel strictement inférieur à m− 1 possède une partie entière inférieure ou égale à m− 2.

ii. On suppose que fx est injective, démontrons par récurrence sur n ∈ N∗ :

Hn : fx(n) ≥ n− 1

• Initialisation. Pour n = 1, on a fx(1) = bxc = 0 car x ∈]0, 1[. On a bien fx(1) ≥ 0.

• Hérédité. On suppose Hn vraie pour n ∈ N∗ fixé. On a donc fx(n) ≥ n − 1. On a nx < (n + 1)x
et par croissance de la fonction partie entière fx(n) ≤ fx(n + 1). Cependant comme fx est supposée
injective, on a forcément fx(n) < fx(n + 1), ce qui donne fx(n + 1) > n − 1 mais comme ce sont des
entiers : fx(n+ 1) ≥ n. Ce qui démontre que Hn+1 est vraie et termine la récurrence.

iii. Les deux résultats obtenus dans les deux questions précédentes sont clairement contradictoires, on en
déduit que fa n’est pas injective.

(c) Soit p ∈ N, on cherche donc un entier n ∈ N∗ tel que :

p ≤ nx < p+ 1⇔ p

x
≤ n < p

x
+

1

x

On voit que l’on peut choisir n =
⌊p
x

⌋
+ 1 puisque l’on aura bien :

p

x
≤
⌊p
x

⌋
+ 1 <

p

x
+

1

x

ceci car x ∈]0, 1[ donc
1

x
> 1.

On en déduit que fx(n) = bnxc = p puisque p ≤ nx < p+ 1. L’entier p ∈ N étant quelconque, on en déduit
que fx est surjective.
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(d) D’après la question précédente, fx étant surjective, on a :

Sp(x) = N∗

3. (a) Soit x ≥ 1 et n ∈ N∗, montrons que fx(n+ 1) > fx(n). On a :

b(n+ 1)xc > (n+ 1)x− 1 = nx+ x− 1 ≥ nx ≥ bnxc

On en déduit que fx est strictement croissante donc elle ne prend pas deux fois la même valeur et :

fx injective

(b) Pour n ∈ N∗ et x ≥ 1, il est clair que nx ≥ 1 ainsi fx(n) ≥ 1 et on voit alors que 0 n’a pas d’antécédent
par fx.

fx non surjective

(c) • Déjà, si x ≥ 2, pour tout n ∈ N∗, on a bnxc ≥ 2n. Ainsi dans l’intervalle J1, 2nK, il y a au moins n
entiers qui n’appartiennent pas au spectre de x. Ceci étant valable pour tout n ∈ N∗, il y a bien une infinité
d’entiers strictement positifs ne faisant pas partie du spectre de x.

• Soit x ∈]1, 2[, il est possible d’écrire x = 1 + r avec r ∈]0, 1[. Soit j ∈ N∗, on considère un entier N ∈ N∗
tel que Nr > j, cet entier existe bien car lim

N→+∞
Nr = +∞. On a alors Nx = N + Nr > N + j donc par

croissance de la partie entière bNxc ≥ N + j. Ainsi, dans l’intervalle J1, N + jK, il y a au moins j entiers
qui n’appartiennent pas au spectre de x. Ceci étant valable pour tout j ∈ N∗, on en déduit qu’il y a encore
dans ce cas une infinité d’entiers n’appartenant pas au spectre de x.

Si x > 1 alors le complémentaire du spectre de x est infini

4. (a) Pour démontrer que Sp est injective, il s’agit de prendre deux réels strictement positifs x et y avec par
exemple x < y et de montrer que Sp(x) 6= Sp(y). Comme R est archimédien, il existe N ∈ N∗ tel que
N(y − x) > 1, c’est-à-dire Ny > Nx + 1. Ce qui implique bNyc > bNxc. Ainsi Sp(y) contient moins de
N éléments inférieurs ou égaux à bNxc tandis que Sp(x) contient N éléments inférieurs ou égaux à bNxc.
On en déduit que les spectres de x et y sont distincts.

Sp est injective

(b) L’application Sp n’est clairement pas surjective car pour x > 0, il est clair que lim
n→+∞

nx = +∞. On en

déduit que Sp(x) n’est pas bornée. Une partie finie de N∗ n’aura pas d’antécédent par l’application Sp.

Sp n’est pas surjective

5. (a) On a Sp(4) = {4n, n ∈ N∗} et Sp(10) = {10n, n ∈ N∗}. Or pour p ∈ N∗ :

4|p et 10|p⇔ 20|p

On a donc :

Sp(4) ∩ Sp(10) = Sp(20)
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(b) Soit (a, b) ∈ (N∗)2, comme dans la question précédente Sp(a) est l’ensemble des multiples strictement
positifs de a et Sp(b) est l’ensemble des multiples strictement positifs de b. De même, par définition du
ppcm de a et b que l’on note a ∧ b, pour tout p ∈ N∗ :

a|p et b|p⇔ (a ∧ b)|p

On en déduit que :

Sp(a) ∩ Sp(b) = Sp(a ∧ b)

C-Théorème de Beatty

1. (a) Pour une partition, nous devons avoir par définition :

• Sp(a) 6= ∅ et Sp(b) 6= ∅.
• Sp(a) ∪ Sp(b) = N∗.
• Sp(a) ∩ Sp(b) = ∅.

(b) i. On peut prendre A = {1} et B = N∗ \ {1}.
ii. On peut choisir A = 2N∗ (les entiers naturels pairs non nuls) et B = N∗ \A.

(c) Prenons le nombre irrationnel le plus simple que nous connaissons a =
√

2. L’énoncé demande explicitement
de démontrer que

√
2 est irrationnel, il s’agit de restituer la preuve vue dans le chapitre 2. Pour ce choix

de a, nous avons :

1

a
+

1

b
= 1⇔ 1

b
= 1− 1

a
⇔ 1

b
= 1− 1√

2
⇔ b =

√
2√

2− 1
=
√

2 + 2

Cette valeur trouvée est irrationnelle, en effet si l’on suppose par l’absurde que
√

2 + 2 = r ∈ Q alors√
2 = r − 2 ∈ Q ce qui n’est pas le cas.

a =
√

2 et b =
√

2 + 2

2. (a) Avec l’encadrement fourni dans l’énoncé, on trouve les premiers entiers du spectre de
√

2 :

1, 2, 4, 5, 7, 8, 9, 11, 12, 14

Ainsi :
u1(
√

2) = 1, u2(
√

2) = 2, u3(
√

2) = 2, u4(
√

2) = 3, u5(
√

2) = 4

u6(
√

2) = 4, u7(
√

2) = 5, u8(
√

2) = 6, u9(
√

2) = 7, u10(
√

2) = 7

(b) i. Soit (k, l) ∈ (N∗)2 avec k > l. En utilisant a > 1, on a :

ka− la = (k − l)a > k − l ≥ 1

On en déduit que :
blac ≤ la < ka− 1 < bkac

Ce qui montre bien que bkac 6= blac.
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ii. Soit n ∈ N∗, l’ensemble {k ∈ N, bkac ≤ n} est une partie de N, non vide car ayant 0 pour élément et
majorée par n donc elle possède un maximum que l’on note p.

• Par définition du maximum, nous avons bpac ≤ n. Or pa− 1 < bpac donc pa < n+ 1 et en divisant
par a > 0, nous obtenons bien :

p <
n+ 1

a

• Toujours par définition du maximum, p + 1 n’appartient pas à l’ensemble donc b(p + 1)ac > n et
comme ce sont des entiers b(p+1)ac ≥ n+1. D’autre part, b(p+1)ac ≤ (p+1)a. Ainsi, nous obtenons
n+ 1 ≤ (p+ 1)a et en divisant par a > 0 :

p ≥ n+ 1

a
− 1

Finalement, nous obtenons l’inégalité voulue :

n+ 1

a
− 1 ≤ p < n+ 1

a

iii. Soit n ∈ N∗ et n ≥ a. On note toujours p = max{k ∈ N, bkac ≤ n}. On a p ≥ 1 car a > 1. On en
déduit que :

J1, nK ∩ Sp(a) = {k ∈ N∗, bkac ≤ n} = {bkac, k ∈ J1, pK}
Or les éléments de cet ensemble sont distincts d’après la question i., ainsi :

un(a) = Card(J1, nK ∩ Sp(a)) = p

L’inégalité de la question précédente, nous donne alors le résultat :

n+ 1

a
− 1 ≤ un(a) <

n+ 1

a

iv. On divise l’inégalité précédente par n ∈ N∗ :

n+ 1

na
− 1

n
≤ un(a)

n
<
n+ 1

na

D’après le théorème d’encadrement, nous avons :

lim
n→+∞

un(a)

n
=

1

a

(c) Soit n ∈ N∗.
i. Par hypothèse de l’énoncé, Sp(a) et Sp(b) forment une partition de N∗ donc Sp(a) ∪ Sp(b) = N∗. On

a par distributivité :

J1, nK = J1, nK ∩ N∗ = J1, nK ∩ (Sp(a) ∪ Sp(b)) = (J1, nK ∩ Sp(a)) ∪ (J1, nK ∩ Sp(b))

ii. Par définition d’une partition, on a Sp(a) ∩ Sp(b) = ∅ ainsi :

(J1, nK ∩ Sp(a)) ∩ (J1, nK ∩ Sp(b)) = J1, nK ∩ Sp(a) ∩ Sp(b) = ∅

iii. Finalement, avec les deux questions précédentes, J1, nK ∩ Sp(a) et J1, nK ∩ Sp(b) sont disjoints et leur
union vaut J1, nK. On en déduit que :

n = Card(J1, nK) = Card(J1, nK ∩ Sp(a)) + Card(J1, nK ∩ Sp(b)) = un(a) + un(b)

Pour tout n ∈ N∗ :
n = un(a) + un(b)
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iv. On divise par n ∈ N∗ :

1 =
un(a)

n
+
un(b)

n

D’après la question b), ces deux suites convergent donc en passant à la limite :

1 =
1

a
+

1

b

(d) i. On suppose par l’absurde que
a

b
=
p

q
avec p ∈ N∗ et q ∈ N∗ (puisque a > 1 et b > 1). Ainsi qa = pb

et donc bqac = bpbc. On en déduit que bqac ∈ Sp(a) ∩ Sp(b). C’est absurde car Sp(a) et Sp(b) sont
disjoints.

On en déduit que
a

b
est irrationnel.

ii. On a :
1

a
+

1

b
= 1⇔ a

b
= a− 1

D’après la question précédente, cela implique que a− 1 est irrationnel et donc a irrationnel.

Enfin, si par l’absurde b est rationnel alors
1

a
= 1− 1

b
donc

1

a
est rationnel et par suite a est rationnel,

ce qui n’est pas le cas.

a et b sont irrationnels

3. (a) Supposons par l’absurde que k ∈ Sp(a) ∩ Sp(b).

i. Par définition du spectre de a, si k ∈ Sp(a) alors il existe m ∈ N∗ tel que k = bmac. De même, comme
k ∈ Sp(b), il existe n ∈ N∗ tel que k = bnbc.

ii. D’après la question précédente et l’encadrement usuel sur la partie entière, nous avons :

ma− 1 < k ≤ ma et nb− 1 < k ≤ nb

Il reste à justifier que les deux inégalités larges sont en réalité des inégalités strictes. Par l’absurde, si

k = ma alors a =
k

m
∈ Q. On sait que a est irrationnel donc c’est contradictoire. De même, k = nb

est impossible également. Finalement, les inégalités sont strictes et l’on a bien :

ma− 1 < k < ma et nb− 1 < k < nb

iii. On divise par a > 0 et b > 0 les inégalités précédentes pour obtenir :

m− 1

a
<
k

a
< m et n− 1

b
<
k

b
< n

Puis l’on somme ces deux inégalités en utilisant la relation
1

a
+

1

b
= 1 :

m+ n− 1 < k < m+ n

Cette inégalité est contradictoire puisque m, n et k sont des entiers. On en déduit que :

Sp(a) ∩ Sp(b) = ∅
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(b) Soit k ∈ N∗. On pose i =
⌊k
a

⌋
et j =

⌊k
b

⌋
.

i. On suppose que k /∈ Sp(a). Par définition de i, nous avons :

i ≤ k

a
≤ i+ 1

ce qui donne :
ia ≤ k < ia+ a

Affinons cette inégalité pour obtenir celle de l’énoncé :

• Si k = ia alors a =
k

i
∈ Q ce qui est absurde car a est irrationnel (i étant bien non nul car k non

nul). Ainsi ia < k.

• D’autre part, on va démontrer que k < ia+ a− 1 sachant que k < ia+ a. Pour cela raisonnons par
l’absurde en supposant que ia+a−1 ≤ k < ia+a alors k < ia+a ≤ k+1. Mais ia+a = (i+1)a n’est
pas un entier car a est irrationnel donc on en déduit que bia+ ac = k. Il en découle que k ∈ Sp(a) ce
qui est contradictoire avec l’hypothèse de la question.

Finalement, si k /∈ Sp(a) alors ia < k < ia+ a− 1.

ii. Si k /∈ Sp(a) et k /∈ Sp(b) alors en appliquant la question précédente, il vient :

ia < k < ia+ a− 1 et jb < k < jb+ b− 1

On divise la première inégalité par a et la deuxième par b et l’on somme en utilisant
1

a
+

1

b
= 1 pour

obtenir :
i+ j < k < i+ j + 1

iii. L’inégalité ci-dessus est contradictoire car i, j et k sont des entiers. On en déduit qu’il est impossible
de trouver un entier k qui n’est pas dans Sp(a) ∪ Sp(b). D’où :

Sp(a) ∪ Sp(b) = N∗

Or d’après la question 3., on a Sp(a) ∩ Sp(b) 6= ∅ et puisque Sp(a) et Sp(b) ne sont pas vides, toutes
les conditions sont finalement réunies pour en déduire que :

Sp(a) et Sp(b) forment une partition de N∗

Ce qui termine totalement la preuve et démontre le théorème de Beatty.

4. (a) L’équation caractéristique est X2 −X − 1 = 0 qui a pour solutions ϕ et, puisque le produit des solutions

vaut −1, l’autre solution est − 1

ϕ
. D’après le cours, on sait que :

∃(A,B) ∈ R2, ∀n ∈ N, Fn = A× ϕn +B ×
(
− 1

ϕ

)n
On trouve A et B avec les conditions initiales :

F0 = 0

F1 = 1
⇔


A+B = 0

Aϕ−B 1

ϕ
= 1

⇔


B = −A

A
(
ϕ− 1

ϕ

)
= 1

⇔


A =

1√
5

B = − 1√
5

Finalement :

∀n ∈ N, Fn =
1√
5

(
ϕn − (−ϕ)−n

)
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(b) Par résolution de l’équation, on trouve ϕ =
1 +
√

5

2
et on calcule ϕ2 = ϕ+ 1 =

3 +
√

5

2
. Ces deux nombres

sont bien irrationnels car si, par l’absurde, ϕ = r ∈ Q alors
√

5 = 1 − 2r ∈ Q ce qui est contradictoire
d’après l’énoncé. On procède de même pour ϕ2. Pour appliquer le théorème de Beatty, il reste à vérifier
que :

1

ϕ
+

1

ϕ2
=
ϕ+ 1

ϕ2
= 1

On en déduit que :

Sp(ϕ) et Sp(ϕ2) forment une partition de N∗

(c) Si Sp(a) et Sp(a2) forment une partition de N∗ toujours en utilisant le théorème de Beatty, on a
1

a
+

1

a2
= 1.

Cette équation est équivalente à a2 + a+ 1 = 0, ainsi a =
1 +
√

5

2
en excluant l’autre solution

1−
√

5

2
qui

est négative.

Si Sp(a) et Sp(a2) forment une partition de N∗ alors a = ϕ

D-Jeu de Wythoff

1. (a) D’après la question 4.(a) de la partie C, on a ϕ2 = ϕ+ 1. Pour n ∈ N∗, on a :

vn = bϕ2nc = b(ϕ+ 1)nc = bϕn+ nc = bϕnc+ n = un + n

∀n ∈ N∗, vn − un = n

(b) Notons (x, y) l’état du jeu à un instant donné. Lorsque l’un des joueurs prélève des jetons, nous obtenons
un nouvel état (x′, y′). Cependant x′ + y′ < x+ y puisqu’au moins un jeton a été pris dans au moins une
pile. La suite des sommes des nombres de jetons des deux piles est une suite d’entiers naturels strictement
décroissante. Cependant, il n’existe pas de suite infinie d’entiers naturels strictement décroissante : le jeu
comporte un nombre fini d’étapes.

(c) Si l’état est (3, 4) et que l’on prélève 2 jetons dans chaque pile, nous passons à l’état (1, 2). Notre adversaire
doit alors jouer, les états possibles qu’il peut atteindre sont : (0, 2), (1, 1) et (0, 1). Ces trois états constituent
des situations dans lesquelles nous pouvons gagner directement.

2. On suppose que l’état (x, y) est configuré, c’est-à-dire qu’il existe n ∈ N∗ tel que x = un et y = vn. Examinons
les différents coups possibles :

• soit on prélève un même nombre de jetons aux deux piles, le nouvel état est noté (x′, y′) avec x′ < x et y′ < y.
Par l’absurde, si ce nouvel état est également configuré alors il existe p ∈ N∗ tel que x′ = up et y′ = vp. Puisque
l’on a retiré le même nombre de jetons aux deux piles et en utilisant le résultat de la question 1.(a), on a :

p = vp − up = y′ − x′ = y − x = n

Dans ce cas x = un = up = x′, ce qui est absurde.

• soit on enlève des jetons à la plus petite pile, le nouvel état est noté (x′, y′) avec x′ < x et y′ = y. Si l’état
est encore configuré alors il existe p ∈ N∗ tel que x′ = up et y′ = vp. On a y = y′ donc vn = vp d’où n = p.
En effet, d’après la question 3.(a) de la partie B, comme ϕ2 > 1, la fonction fϕ2 est injective. Dans ce cas
x′ = up = un = x, ce qui est absurde.

• le raisonnement est identique si l’on enlève des jetons à la plus grande pile.

Si un état est configuré alors l’état suivant ne l’est pas
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3. On suppose que l’état (x, y) n’est pas configuré. Si x = 0 ou y = 0 ou x = y, on se ramène à l’état configuré
(0, 0) en un seul coup. On suppose dans la suite que 1 ≤ x < y et on note n = y−x ∈ N∗. Nous allons considérer
deux cas :

• si x > un alors la stratégie consiste à retirer x− un jetons dans chaque pile. Le nouvel état (x′, y′) est défini
par x′ = x− (x− un) = un et y′ = y − (x− un) = n+ un = vn. Ainsi l’état obtenu (x′, y′) est bien configuré.

• on suppose à présent que x < un. Les suites (un)n≥1 et (vn)n≥1 formant une partition de N∗, on sait que x
est égal à l’un des termes de l’une de ces suites :

I s’il existe p ∈ N∗ tel que x = up alors p < n car up < un. On choisit d’enlever α = y − vp jetons à
la pile en contenant y ainsi il y en aura y′ = y − α = vp et x′ = x = up. Ce qui fait que l’état (x′, y′) est bien
configuré mais il faut vérifier tout de même que α > 0 :

α = y − vp = x+ n− vp = n− p > 0

I s’il existe q ∈ N∗ tel que x = vq, on cherche α tel que y′ = y − α = uq, on trouve α = y − uq > 0
car uq < vq = x < y. On prélève α jetons dans la pile de y et on garde x′ = x. Le nouvel état (x′, y′) est alors
également configuré.

Si un état n’est pas configuré alors il est possible de jouer afin que l’état suivant le soit

4. Si l’état initial est configuré alors on laisse jouer notre adversaire en premier. D’après la question 2., notre
adversaire nous laissera un état non configuré et en jouant nous pouvons obtenir un état configuré d’après la
question 3. On répète ce procédé. Or le jeu se termine forcément et par un état configuré (0, 0) ainsi nous
sommes certain de gagner car nos états peuvent toujours être configurés et ceux de notre adversaire ne le seront
jamais.

Si l’état initial n’est pas configuré, on commence à jouer afin que l’état suivant soit configuré. C’est alors à notre
adversaire de jouer et l’on est ramené au premier cas.

Vous pouvez jouer à ce jeu en suivant ce lien : http ://jm.davalan.org/jeux/nim/wythoff/index.html.


