Calculs de primitives et d'intégrales

 \bot Soit $\alpha \in \mathbb{C} \setminus \mathbb{R}$, déterminer une primitive sur \mathbb{R} de :

$$f: t \mapsto \frac{1}{t-\alpha}$$

 $\begin{tabular}{c} \begin{tabular}{c} \begin{tabu$ précisera l'ensemble de définition.

$$f_1: x \mapsto \frac{e^{\sqrt{x}}}{\sqrt{x}}$$
 $f_2: x \mapsto \frac{\ln(x)}{x}$

$$f_3: x \mapsto \frac{2x+1}{3x^2+3x+7}$$
 $f_4: x \mapsto 2x(3x^2-1)^3$

$$f_5: x \mapsto \operatorname{th}(x)$$
 $f_6: x \mapsto \frac{1}{(3x-2)^4}$

$$f_7: x \mapsto (6x^2 + 8)\sin(x^3 + 4x)$$
 $f_8: x \mapsto (6x + 3)\sqrt{x^2 + x + 1}$

$$f_9: x \mapsto \frac{x^2}{(x^3 - 2)^2}$$
 $f_{10}: x \mapsto \frac{1}{x \ln(x)}$

$$f_{11}: x \mapsto \cos^2(x)$$
 $f_{12}: x \mapsto \sqrt{5x+4}$

$$f_{13}: x \mapsto \tan(x)$$
 $f_{14}: x \mapsto \frac{2x+5}{(x^2+5x+8)^4}$

$$f_{15}: x \mapsto \cos^3(x)$$
 $f_{16}: x \mapsto \cos(x)\sin(x)$

$$f_{17}: x \mapsto \frac{3}{1+9x^2}$$
 $f_{18}: x \mapsto \frac{e^x}{1+e^{2x}}$

$$f_{19}: x \mapsto \frac{2}{3+2x^2}$$
 $f_{20}: x \mapsto \frac{1-\operatorname{th}^2(x)}{\sqrt{1-\operatorname{th}^2(x)}}$

$$f_{21}: x \mapsto \frac{1}{1+e^x}$$
 $f_{22}: x \mapsto \frac{1}{1-x^2}$

$$f_{23}: x \mapsto \frac{1}{\operatorname{sh}^2(x)}$$
 $f_{24}: x \mapsto \ln(x)$

$$f_{25}: x \mapsto \frac{\ln(x)}{x(1+\ln(x)^2)}$$
 $f_{26}: x \mapsto -\frac{1}{\sqrt{1-2x^2}}$

$$f_{27}: x \mapsto \tan^2(x)$$
 $f_{28}: x \mapsto \tan^3(x)$

$$f_{29}: x \mapsto \frac{x^4}{2+x}$$
 $f_{30}: x \mapsto \frac{ax^2 + bx + c}{x^2 + 1}$

 $\boxed{3}$ $\heartsuit \bigstar$ À l'aide d'une ou plusieurs intégrations par parties, trouver une primitive des fonctions suivantes. On précisera l'ensemble de définition.

$$f_1: x \mapsto \ln(x)$$
 $f_2: x \mapsto \operatorname{Arctan}(x)$

$$f_3: x \mapsto x \ln(x)$$
 $f_4: x \mapsto x \operatorname{Arctan}(x)$

$$f_5: x \mapsto x^2 \ln(x)$$
 $f_6: x \mapsto (-x^3 + x^2 - 2x + 3)e^{-x}$

$$f_7: x \mapsto x^2 \sin(x)$$
 $f_8: x \mapsto \frac{\operatorname{Arctan}(x)}{x^3}$

$$f: t \mapsto te^t \sin(t)$$

 \bullet Déterminer une primitive des fonctions suivantes. On précisera l'ensemble de définition.

$$f_1: t \mapsto \frac{1}{t^2 - 6t + 8}$$
 $f_2: t \mapsto \frac{1}{t^2 + 3t + 4}$

$$f_3: t \mapsto \frac{3t+2}{2t^2-4t+3}$$
 $f_4: t \mapsto \frac{t^2+t+2}{t^2+2t+2}$

 $\boxed{6}$ \heartsuit ★ À l'aide d'un changement de variable, déterminer une primitive des fonctions suivantes. On précisera l'ensemble de définition.

$$f_1: x \mapsto \frac{x}{1+x^4}$$
 $f_2: x \mapsto \frac{1}{e^{2x}+e^{-x}}$

$$f_3: x \mapsto \sqrt{e^x - 1}$$
 $f_4: x \mapsto \frac{\cos(x)}{1 + \cos^2(x)}$

$$f_5: x \mapsto \frac{\sin(x)}{1+\sin^2(x)}$$
 $f_6: x \mapsto \frac{1}{\cos^4(x)}$

$$f_7: x \mapsto \frac{1}{\cos^3(x)}$$
 $f_8: x \mapsto \frac{\operatorname{th}(x)}{1 + \operatorname{ch}(x)}$

$$f_9: x \mapsto \frac{\operatorname{ch}(x)}{1 + \operatorname{ch}^2(x)} \qquad f_{10}: x \mapsto \frac{1}{\operatorname{ch}^3(x)}$$

$$f_{11}: x \mapsto \frac{x^5}{1+x^{12}}$$
 $f_{12}: x \mapsto \frac{x}{1+\sqrt{x+1}}$

$$f_{13}: x \mapsto \frac{1-\sqrt{x}}{1+\sqrt{x}}$$
 $f_{14}: x \mapsto \frac{3+\ln(x)}{(4+\ln(x))^2}$

$$f_{15}: x \mapsto \sqrt{x^2\sqrt{x} + x}$$
 $f_{16}: x \mapsto \frac{e^{2x}}{\sqrt{e^x + 1}}$

 $\boxed{7}$ $\bigstar \bigstar$ Calculer les intégrales suivantes :

$$a) \int_0^1 \frac{dt}{\operatorname{ch}(t)}$$

b)
$$\int_{0}^{\frac{\pi}{2}} \frac{dt}{2 + \cos(t)}$$

$$c) \int_0^{\frac{\pi}{4}} \frac{dt}{1+\sin(t)\cos(t)} \quad d) \int_0^1 \frac{dt}{\sqrt{e^t+1}}$$

 $8 \star \star$ Soit $n \in \mathbb{N}^*$, on note F_n la primitive sur \mathbb{R} qui s'annule en 0 de :

$$f_n: t \mapsto \frac{1}{(1+t^2)^n}$$

- a) Calculer F_1 .
- b) Calculer F_2 .
- c) Pour $n \in \mathbb{N}^*$, donner une relation entre F_n et F_{n+1} .
- d) Calculer F_3 .

1

9 $\star\star\star$ Calculer les intégrales suivantes :

a)
$$\int_0^1 \sqrt{\frac{1-t}{1+t}} dt$$
 b) $\int_0^1 \frac{\operatorname{Arctan}(x)}{1+x} dx$

b)
$$\int_0^1 \frac{\operatorname{Arctan}(x)}{1+x} dx$$

2025-2026

10 ★★★ Déterminer une primitive des fonctions suivantes en précisant l'ensemble de définition :

a)
$$f: x \mapsto \frac{\operatorname{Arcsin}(\sqrt{x})}{(1-x)^{\frac{3}{2}}}$$
 b) $g: x \mapsto \frac{\operatorname{Arctan}(x)}{x^2}$

$$\boxed{\text{D1}} \bigstar \bigstar \bigstar \text{ Calculer } \int_0^{\pi/4} \ln(1 + \tan t) dt.$$

$$D2$$
 $\star\star\star$ Soit $a \in [1, +\infty[$, calculer :

$$\int_{\frac{1}{a}}^{a} \frac{\operatorname{Arctan}(x)}{x} dx$$

D3 $\bigstar \bigstar \bigstar$ Donner une formule pour une primitive *n*-ième de la fonction $f: t \mapsto \ln(t)$ sur \mathbb{R}_+^* .

2025-2026

2