MPSI2 Cours 4 : Validité d’un algorithme ITC

1 Introduction

e Lorsque 'on écrit un algorithme, il est impératif de vérifier que cet algorithme produit un
résultat apres un nombre fini d’étapes et que ce résultat est correct, c’est-a-dire conforme a ce qui
est attendu. En effet, les problemes de sécurité (données personnelles, systémes sensibles comme
dans un hopital) et de stureté sont devenus des questions tres importantes dans notre société de
plus en plus connectée.

Définition : On dit qu'un algorithme est valide s’il se termine et produit un résultat correct.

e Deux conditions sont donc a vérifier :
» l'algorithme donne une réponse, c’est I’étude de la terminaison,

» la réponse donnée est celle attendue, c’est I’étude de la correction.

e Si lorsqu’il se termine, I'algorithme donne la réponse attendue, on parle de correction
partielle. Dans le cas ou la terminaison et la correction sont assurées, on parle de correction
totale.

e L’objectif de ce chapitre, est de mettre en place des outils théoriques permettant de démontrer
la validité d’un algorithme.

2 Terminaison d’un algorithme

2.1 Meéthode de justification

e Il est clair qu'une boucle for va se terminer au bout d’un nombre fini d’itérations et méme
si le temps mis peut-étre tres long, d’'un point de vue théorique la terminaison est assurée.

e Toute la problématique de ce paragraphe est de démontrer qu’'une boucle while va se termi-
ner. Pour cela, on va trouver une quantité, ¢, qui vérifie les deux conditions suivantes :

» c est un entier naturel
» ¢ décroit strictement a chaque itération de la boucle while.

Comme il n’existe pas de suite infinie strictement décroissante d’entiers naturels, il ne peut y
avoir qu’'un nombre fini d’itérations de la boucle while. Cette quantité c est appelée un variant
de boucle.

e On peut étendre la notion de variant de boucle en trouvant une expression dont les valeurs
prises au cours des itérations constituent une suite qui converge en un nombre fini d’étapes vers
une valeur satisfaisant la condition d’arrét de la boucle.

2.2 Deux exemples

e Voici un exemple simple :

x=0
while x < 10:
X =X+ 2

Un variant de boucle est 10 — x. En effet, la suite des valeurs prises par 10 — x au cours de
I’exécution de la boucle est une suite d’entiers naturels qui décroit strictement a chaque passage
dans la boucle puisque x devient x + 2. Le nombre de passages dans la boucle est donc fini, ce
qui démontre que le programme se termine.

2025-2026

B oW N e

gt W N =

MPSI2 Cours 4 : Validité d’un algorithme ITC

e On considere la fonction pged qui prend en arguments deux entiers naturels a et b non nuls
et qui renvoie la valeur du pged de a et b. Cette fonction se base sur I'algorithme d’FEuclide qui
permet d’obtenir le pged comme le dernier reste non nul dans la suite des divisions euclidiennes.

def pged(a, b):
while b > 0: # tant que le reste est non nul, on poursuit les divisions
a, b = b, a%b # a%b désigne le reste dans la division euclidienne de a par b
return(a) # on renvoit le dernier reste non nul

Un variant de boucle est b. En effet, b est un entier naturel et d’apres le théoréme de la division
euclidienne, si ’'on effectue la division de a par b :

(g, r) €N a=bg+r avecO0<r<b-—1

A chaque passage dans la boucle, b est remplacé par ce reste r ainsi la valeur de b décroit
strictement comme voulu. On a trouvé une suite d’entiers naturels strictement décroissante, ce
qui assure la terminaison de la boucle.

3 Correction d’un algorithme

3.1 Meéthode de justification

e Lorsque l'on écrit un algorithme, on peut tester quelques cas significatifs pour voir s’il
fonctionne mais il est plus satisfaisant de démontrer qu’il est correct dans tous les cas. Comme
I’a dit le mathématicien et informaticien Edsger Dijkstra :

"Testing shows the presence, not the absence of bugs”

e Pour démontrer qu’un algorithme est correct, on doit trouver un invariant de boucle,
c’est-a-dire une propriété qui :
» est vérifiée avant d’entrer dans la boucle,
» si elle est vérifiée avant une itération de la boucle, elle est aussi vérifiée apres celle-ci
» et si la terminaison est assurée, la propriété sera vraie a la sortie de la boucle.

C’est analogue au principe de récurrence, la premiere étape correspond a l'initialisation, la
deuxiéme étape a I'hérédité et la troisieme étape a la conclusion.

3.2 Deux exemples

e Voici un premier exemple :

m =0

p=0

while m < a:
m=m + 1
p=p+b

En analysant ce programme, on comprend qu’il effectue le produit a x b puisqu’il ajoute a
fois le nombre b & la variable p. Nous allons démontrer ceci en considérant 'invariant de boucle
suivant :

p=mxXb

» Cette propriété est vraie initialement, c’est-a-dire avant de rentrer dans la boucle
puisque les variables m et p sont initialisées a 0.

2025-2026

B oW N e

N o G

0w N O Ut R W N

MPSI2 Cours 4 : Validité d’un algorithme ITC

» On suppose que la propriété p = m X b est vraie avant un passage dans la boucle.
Les nouvelles valeurs de m et p apres le passage dans la boucle, notées m’ et p’, sont p’ = p + b
et m' = m + 1, ainsi :

m' xb=(m+1)xb=mxb+b=p+b=p

On a bien p’ = m’ x b, ce qui montre que la propriété reste vraie apres ce passage dans la boucle.

» Si la terminaison de I'algorithme a été démontrée au préalable, on en déduit qu’a la
fin de la boucle, on a toujours p = m x b. Or a la sortie de la boucle, la variable m a pour valeur
celle de a. Ainsi p = a x b comme voulu. Cet algorithme effectue bien le produit de a par b.

e Voici un autre exemple ou 'on considere l'algorithme suivant qui détermine le plus grand
élément d’une liste non vide de nombres.

def maximum(L):
maxi = L[0]
n = len(L)
for i in range(1, n):
if L[i] > maxi:
maxi = Lj]
return (maxi)

La terminaison de l'algorithme est assurée puisqu’il met en jeu une boucle for, justifions la
correction de l’algorithme. Pour i € [0, — 1], on considere la propriété :

P; : 7apreés i passages dans la boucle, maxi est le maximum des i + 1 premiers éléments de la liste L”

» La propriété Py est vraie puisque si ’'on a effectué 0 passage dans la boucle maxi est
le premier élément de la liste.

» On suppose que P; est vraie pour i € [0,n—2], c’est-a-dire que maxi est le maximum
des 7 + 1 premiers éléments de la liste. Lors du passage dans la boucle numéro 7 + 1, on compare
maxi au i+ 2-eéme élément de la liste (celui d’indice i+ 1), ainsi la fin de ce passage dans la boucle
maxi sera bien le maximum des ¢ + 2 premiers éléments de la liste. Ceci démontre que F;41 est
vraie.

» A la fin de la boucle P,_; est vraie (on fait n—1 passages dans la boucle), ¢’est-a-dire
que mazi est le maximum des n premiers éléments de la liste, c’est bien le maximum de la liste.

4 L’exemple de la division euclidienne

4.1 L’algorithme

Voyons un dernier exemple important car la fonction mise en jeu est classique. Il s’agit d’un
algorithme qui prend en parametres deux entiers naturels a et b avec b # 0 et qui renvoie le
quotient et le reste dans la division euclidienne de a par b. Voici cette fonction :

def euclide(a, b):
77”renvoie le quotient et le reste dans la division euclidienne de a par b”””
q = 0 # initialisation du quotient et du reste

r =a

while r >= b:
a=q+1
r=r—>b

return(q,r)

2025-2026

MPSI2 Cours 4 : Validité d’un algorithme ITC

e Prenons un exemple afin d’appréhender le fonctionnement de algorithme : @ = 17 et b = 4.
Voici I’évolution des valeurs des variables ¢ et r au cours de I'algorithme.

Etape q| r
Avant la premiére itération de la boucle while | 0 | 17
Apres la premiére itération de la boucle while | 1 | 13
Apres la deuxiéme itération de la boucle while | 2| 9
Apres la troisieme itération de la boucle while | 3 | 5
Apres la quatrieme itération de la boucle while | 4 | 1

C’est la technique que ’on apprend a 1’école primaire pour effectuer une division euclidienne,
on regarde ”combien de fois 4 va dans 177 en enlevant 4 & 17 autant de fois que possible. Ce
nombre de fois est notre quotient et le nombre restant est notre reste. Démontrons a présent la
terminaison et la correction de notre algorithme afin de justifier sa validité.

4.2 Terminaison

On peut choisir comme variant de boucle r. En effet, tout au long de I’algorithme, on a bien r
qui est un entier et r > 0 puisqu’a chaque fois que I’on rentre dans la boucle while, on ar > b et r
est remplacé par r — b dans la boucle. D’autre part, r décroit strictement & chaque itération de la
boucle car b > 0. On a trouvé une suite d’entiers naturels qui décroit strictement, cela démontre
que le programme se termine.

4.3 Correction

On va démontrer qu'un invariant de boucle est la propriété :
P:7’r>0eta=0bg+1r"

» Avant de rentrer dans la boucle, on a g =0et r =a ainsi r > 0 et a = bg+ r.

» On suppose qu’au début d’un passage dans la boucle while,on ar > 0 et a = bg+r.
Il y a deux possibilités :
-soit la condition r > b n’est pas vérifiée dans ce cas, on sort de la boucle et
notre propriété reste inchangée.
-soit la condition est vérifiée et I'on rentre dans la boucle, dans ce cas ¢ est
transformé en ¢’ = ¢+ 1 et r devient ¥’ = r — b. On a alors :

a=bg+r=0bq+1)+r—>b="bg +1r

De plus ¥ = — b > 0 car r > b puisque 'on est entré dans la boucle. La propriété est donc
bien inchangée apres un passage supplémentaire dans la boucle.

» Lorsque ’on sort de la boucle, on a a = bg+r et 0 < 7 < b avec ¢ et r deux entiers
naturels. Cette écriture correspond bien & la division euclidienne de a par b avec ¢ le quotient et
r le reste. Ceci démontre que l'algorithme renvoie bien le résultat attendu et termine la preuve
de la correction.

2025-2026

