
MPSI2 Cours 4 : Validité d’un algorithme ITC

1 Introduction

• Lorsque l’on écrit un algorithme, il est impératif de vérifier que cet algorithme produit un
résultat après un nombre fini d’étapes et que ce résultat est correct, c’est-à-dire conforme à ce qui
est attendu. En effet, les problèmes de sécurité (données personnelles, systèmes sensibles comme
dans un hôpital) et de sûreté sont devenus des questions très importantes dans notre société de
plus en plus connectée.

Définition : On dit qu’un algorithme est valide s’il se termine et produit un résultat correct.

• Deux conditions sont donc à vérifier :

I l’algorithme donne une réponse, c’est l’étude de la terminaison,

I la réponse donnée est celle attendue, c’est l’étude de la correction.

• Si lorsqu’il se termine, l’algorithme donne la réponse attendue, on parle de correction
partielle. Dans le cas où la terminaison et la correction sont assurées, on parle de correction
totale.

• L’objectif de ce chapitre, est de mettre en place des outils théoriques permettant de démontrer
la validité d’un algorithme.

2 Terminaison d’un algorithme

2.1 Méthode de justification

• Il est clair qu’une boucle for va se terminer au bout d’un nombre fini d’itérations et même
si le temps mis peut-être très long, d’un point de vue théorique la terminaison est assurée.

• Toute la problématique de ce paragraphe est de démontrer qu’une boucle while va se termi-
ner. Pour cela, on va trouver une quantité, c, qui vérifie les deux conditions suivantes :

I c est un entier naturel

I c décrôıt strictement à chaque itération de la boucle while.

Comme il n’existe pas de suite infinie strictement décroissante d’entiers naturels, il ne peut y
avoir qu’un nombre fini d’itérations de la boucle while. Cette quantité c est appelée un variant
de boucle.

• On peut étendre la notion de variant de boucle en trouvant une expression dont les valeurs
prises au cours des itérations constituent une suite qui converge en un nombre fini d’étapes vers
une valeur satisfaisant la condition d’arrêt de la boucle.

2.2 Deux exemples

• Voici un exemple simple :

1 x = 0
2 while x < 10:
3 x = x + 2

Un variant de boucle est 10 − x. En effet, la suite des valeurs prises par 10 − x au cours de
l’exécution de la boucle est une suite d’entiers naturels qui décroit strictement à chaque passage
dans la boucle puisque x devient x + 2. Le nombre de passages dans la boucle est donc fini, ce
qui démontre que le programme se termine.

2025-2026



MPSI2 Cours 4 : Validité d’un algorithme ITC

• On considère la fonction pgcd qui prend en arguments deux entiers naturels a et b non nuls
et qui renvoie la valeur du pgcd de a et b. Cette fonction se base sur l’algorithme d’Euclide qui
permet d’obtenir le pgcd comme le dernier reste non nul dans la suite des divisions euclidiennes.

1 def pgcd(a, b):
2 while b > 0: # tant que le reste est non nul, on poursuit les divisions
3 a, b = b, a%b # a%b désigne le reste dans la division euclidienne de a par b
4 return(a) # on renvoit le dernier reste non nul

Un variant de boucle est b. En effet, b est un entier naturel et d’après le théorème de la division
euclidienne, si l’on effectue la division de a par b :

∃(q, r) ∈ N2, a = bq + r avec 0 ≤ r ≤ b− 1

À chaque passage dans la boucle, b est remplacé par ce reste r ainsi la valeur de b décroit
strictement comme voulu. On a trouvé une suite d’entiers naturels strictement décroissante, ce
qui assure la terminaison de la boucle.

3 Correction d’un algorithme

3.1 Méthode de justification

• Lorsque l’on écrit un algorithme, on peut tester quelques cas significatifs pour voir s’il
fonctionne mais il est plus satisfaisant de démontrer qu’il est correct dans tous les cas. Comme
l’a dit le mathématicien et informaticien Edsger Dijkstra :

”Testing shows the presence, not the absence of bugs”

• Pour démontrer qu’un algorithme est correct, on doit trouver un invariant de boucle,
c’est-à-dire une propriété qui :

I est vérifiée avant d’entrer dans la boucle,

I si elle est vérifiée avant une itération de la boucle, elle est aussi vérifiée après celle-ci

I et si la terminaison est assurée, la propriété sera vraie à la sortie de la boucle.

C’est analogue au principe de récurrence, la première étape correspond à l’initialisation, la
deuxième étape à l’hérédité et la troisième étape à la conclusion.

3.2 Deux exemples

• Voici un premier exemple :

1 m = 0
2 p = 0
3 while m < a:
4 m = m + 1
5 p = p + b

En analysant ce programme, on comprend qu’il effectue le produit a × b puisqu’il ajoute a
fois le nombre b à la variable p. Nous allons démontrer ceci en considérant l’invariant de boucle
suivant :

p = m× b

I Cette propriété est vraie initialement, c’est-à-dire avant de rentrer dans la boucle
puisque les variables m et p sont initialisées à 0.

2025-2026



MPSI2 Cours 4 : Validité d’un algorithme ITC

I On suppose que la propriété p = m × b est vraie avant un passage dans la boucle.
Les nouvelles valeurs de m et p après le passage dans la boucle, notées m′ et p′, sont p′ = p + b
et m′ = m + 1, ainsi :

m′ × b = (m + 1)× b = m× b + b = p + b = p′

On a bien p′ = m′× b, ce qui montre que la propriété reste vraie après ce passage dans la boucle.

I Si la terminaison de l’algorithme a été démontrée au préalable, on en déduit qu’à la
fin de la boucle, on a toujours p = m× b. Or à la sortie de la boucle, la variable m a pour valeur
celle de a. Ainsi p = a× b comme voulu. Cet algorithme effectue bien le produit de a par b.

• Voici un autre exemple où l’on considère l’algorithme suivant qui détermine le plus grand
élément d’une liste non vide de nombres.

1 def maximum(L):
2 maxi = L[0]
3 n = len(L)
4 for i in range(1, n):
5 if L[i ] > maxi:
6 maxi = L[i]
7 return(maxi)

La terminaison de l’algorithme est assurée puisqu’il met en jeu une boucle for, justifions la
correction de l’algorithme. Pour i ∈ J0, n− 1K, on considère la propriété :

Pi : ”après i passages dans la boucle, maxi est le maximum des i + 1 premiers éléments de la liste L”

I La propriété P0 est vraie puisque si l’on a effectué 0 passage dans la boucle maxi est
le premier élément de la liste.

I On suppose que Pi est vraie pour i ∈ J0, n−2K, c’est-à-dire que maxi est le maximum
des i + 1 premiers éléments de la liste. Lors du passage dans la boucle numéro i + 1, on compare
maxi au i+2-ème élément de la liste (celui d’indice i+1), ainsi la fin de ce passage dans la boucle
maxi sera bien le maximum des i + 2 premiers éléments de la liste. Ceci démontre que Pi+1 est
vraie.

I À la fin de la boucle Pn−1 est vraie (on fait n−1 passages dans la boucle), c’est-à-dire
que maxi est le maximum des n premiers éléments de la liste, c’est bien le maximum de la liste.

4 L’exemple de la division euclidienne

4.1 L’algorithme

Voyons un dernier exemple important car la fonction mise en jeu est classique. Il s’agit d’un
algorithme qui prend en paramètres deux entiers naturels a et b avec b 6= 0 et qui renvoie le
quotient et le reste dans la division euclidienne de a par b. Voici cette fonction :

1 def euclide(a, b):
2 ”””renvoie le quotient et le reste dans la division euclidienne de a par b”””
3 q = 0 # initialisation du quotient et du reste
4 r = a
5 while r >= b:
6 q = q + 1
7 r = r − b
8 return(q,r)

2025-2026



MPSI2 Cours 4 : Validité d’un algorithme ITC

• Prenons un exemple afin d’appréhender le fonctionnement de l’algorithme : a = 17 et b = 4.
Voici l’évolution des valeurs des variables q et r au cours de l’algorithme.

Étape q r

Avant la première itération de la boucle while 0 17

Après la première itération de la boucle while 1 13

Après la deuxième itération de la boucle while 2 9

Après la troisième itération de la boucle while 3 5

Après la quatrième itération de la boucle while 4 1

C’est la technique que l’on apprend à l’école primaire pour effectuer une division euclidienne,
on regarde ”combien de fois 4 va dans 17” en enlevant 4 à 17 autant de fois que possible. Ce
nombre de fois est notre quotient et le nombre restant est notre reste. Démontrons à présent la
terminaison et la correction de notre algorithme afin de justifier sa validité.

4.2 Terminaison

On peut choisir comme variant de boucle r. En effet, tout au long de l’algorithme, on a bien r
qui est un entier et r ≥ 0 puisqu’à chaque fois que l’on rentre dans la boucle while, on a r ≥ b et r
est remplacé par r− b dans la boucle. D’autre part, r décrôıt strictement à chaque itération de la
boucle car b > 0. On a trouvé une suite d’entiers naturels qui décroit strictement, cela démontre
que le programme se termine.

4.3 Correction

On va démontrer qu’un invariant de boucle est la propriété :

P : ”r ≥ 0 et a = bq + r”

I Avant de rentrer dans la boucle, on a q = 0 et r = a ainsi r ≥ 0 et a = bq + r.

I On suppose qu’au début d’un passage dans la boucle while, on a r ≥ 0 et a = bq+r.
Il y a deux possibilités :

-soit la condition r ≥ b n’est pas vérifiée dans ce cas, on sort de la boucle et
notre propriété reste inchangée.

-soit la condition est vérifiée et l’on rentre dans la boucle, dans ce cas q est
transformé en q′ = q + 1 et r devient r′ = r − b. On a alors :

a = bq + r = b(q + 1) + r − b = bq′ + r′

De plus r′ = r − b ≥ 0 car r ≥ b puisque l’on est entré dans la boucle. La propriété est donc
bien inchangée après un passage supplémentaire dans la boucle.

I Lorsque l’on sort de la boucle, on a a = bq + r et 0 ≤ r < b avec q et r deux entiers
naturels. Cette écriture correspond bien à la division euclidienne de a par b avec q le quotient et
r le reste. Ceci démontre que l’algorithme renvoie bien le résultat attendu et termine la preuve
de la correction.

2025-2026


