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Acte I-Premiers exemples

1. (a) Il s’agit de vérifier si tout ensemble à deux éléments de l’ensemble E est inclus dans un et un seul élément

de E . Il y a

(
7

2

)
=

7× 6

2
= 21 parties de E à 2 éléments. La vérification peut se présenter ainsi :

{a, b, c} {a, d, e} {a, f, g} {b, d, f} {b, e, g} {c, d, g} {c, e, f}
{a, b} X
{a, c} X
{a, d} X
{a, e} X
{a, f} X
{a, g} X
{b, c} X
{b, d} X

{b, e} X
{b, f} X
{b, g} X
{c, d} X
{c, e} X
{c, f} X
{c, g} X
{d, e} X
{d, f} X
{d, g} X
{e, f} X
{e, g} X
{f, g} X

La case du tableau est cochée s’il y a inclusion. Par exemple, la case encadrée du tableau correspond à
l’inclusion : {b, e} ⊂ {b, e, g}.
Il est ainsi clair que chaque partie à deux éléments de E est incluse dans un unique élément de E .

E est un système de Steiner d’ordre 7

On remarque également que chaque élément de ce système de Steiner contient exactement 3 ensembles à 2
de E.

(b) Ce dessin est une traduction géométrique de la question précédente. On remarque que chaque ensemble de
deux points appartient à une et une seule droite (ou cercle pour b, d et f). Une droite correspondant bien
une partie à trois éléments de E puisqu’elle contient exactement trois points. Plus précisément, l’analogie
est la suivante :
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Pour reprendre l’exemple encadré dans le tableau, on a les deux points b et e qui appartiennent à la droite
passant par les points b, e et g, ce qui correspond à l’inclusion {b, e} ⊂ {b, e, g}.

La configuration ci-dessus est appelée plan de Fano, c’est le plan projectif construit sur le corps fini Z/2Z.

2. Soit E = {a, b} un ensemble à deux éléments. Il est clair que E ne possède aucune partie à trois éléments, on
aura forcément E = ∅. Ainsi l’ensemble à deux éléments {a, b} ne sera inclus dans aucun élément de E . Il est
impossible que E soit un système de Steiner.

Il n’existe pas de système de Steiner d’ordre 2

Soit E = {a, b, c, d}. Par l’absurde, supposons que E soit un système de Steiner de E. L’ensemble E possède
au moins 2 éléments sinon l’un des éléments de E n’appartiendrait pas à l’un des éléments de E . Cependant 2
parties de E ont au moins 2 éléments de E en commun, c’est contradictoire avec la définition d’un système de
Steiner.

Il n’existe pas de système de Steiner d’ordre 4

3. Soit E = {a}, un système de Steiner de E est E = ∅. En effet, toute partie à deux éléments de E (il n’y en a
pas) est incluse dans l’un des éléments de E .

Soit E = {a, b, c} un ensemble à trois éléments, on pose E = {{a, b, c}}. Il est clair que toute partie à deux
éléments de E est incluse dans un unique élément de E .

1 et 3 sont des nombres de Steiner
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Acte II-Condition nécessaire sur les nombres de Steiner

1. (a) Il s’agit de dénombrer les couples (P,A) ∈ P2 × E que l’on peut former avec la condition P ⊂ A. Il y a
p choix possibles pour la partie A. De plus, la partie A étant un triplet, elle contient 3 paires. Une paire
étant contenue dans un unique triplet par définition d’un système de Steiner, on a :

Card(X) = 3p

(b) Cette application est surjective si chaque paire de E est incluse dans au moins un triplet de E . Elle est
injective si chaque paire de E est incluse dans au plus un triplet de E . Enfin, elle est bijective si elle est
injective et surjective, c’est-à-dire si chaque paire de E est incluse dans exactement un triplet de E .

Γ est bijective si et seulement si E est un système de Steiner de E

(c) On a supposé que E est un système de Steiner de E, on en déduit que Γ est une bijection. S’il y a
une bijection entre deux ensembles finis alors ceux-ci sont de même cardinal. Le cardinal de P2(E) vaut(
n

2

)
=

n(n− 1)

2
, en effet choisir une paire de E revient à choisir 2 éléments parmi n. Ainsi, on a :

3p =
n(n− 1)

2
. On en déduit la relation suivante entre p et n :

p =
n(n− 1)

6

2. Choisissons un élément x de E. Cet élément appartient exactement à n− 1 paires d’éléments de E. Or chaque
triplet de E auquel x appartient contient exactement deux paires dont l’un des éléments est x. On en déduit

que x est contenu dans exactement
n− 1

2
triplets de E .

Tout élément de E appartient à exactement
n− 1

2
triplets de E .

3. Si E est un système de Steiner sur l’ensemble E alors les deux questions précédentes impliquent que
n(n− 1)

6
et

n− 1

2
sont des entiers, c’est-à-dire que : 6|n(n−1) et 2|(n−1). Examinons les différents cas selon les congruences

possibles modulo 6. La condition 2|(n− 1) implique que n− 1 est congru à 0, 2 ou 4 modulo 6, c’est-à-dire que
n est congru à 1, 3 ou 5 modulo 6. On a alors :

si n ≡ 1 [6] alors n(n− 1) ≡ 0 [6]

si n ≡ 3 [6] alors n(n− 1) ≡ 0 [6]

si n ≡ 5 [6] alors n(n− 1) ≡ 2 [6]

On en déduit que n ≡ 1 [6] ou n ≡ 3 [6]. Nous avons bien vérifié que si un système de Steiner existe sur un
ensemble à n éléments, il est nécessaire que :

n ≡ 1 [6] ou n ≡ 3 [6]
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Entracte-Utilisation de Python

Il est possible de gérer directement les ensembles en Python avec le type set mais savoir manier les listes vous sera
plus utile en IPT cette année.

1. On construit l’ensemble des listes à deux éléments de E avec deux boucles for imbriquées. Le fait de prendre
des indices i et j tels que i < j évite de compter en double [a, b] et [b, a] qui correspondent à la même partie et
de considérer [a, a] qui correspond à un ensemble avec 1 élément.

Par exemple :

Vous pouvez vérifier que cette liste contient en effet
7× 6

2
= 21 éléments.

2. De même avec trois boucles imbriquées :

Par exemple :

3. Voici une version de la fonction demandée :

4. On parcourt la liste S et on utilise la fonction inclusion précédente :

5. Par définition S est un système de Steiner pour E si et seulement si chaque paire de E est incluse dans un
unique triplet de S. On peut ainsi utiliser la fonction occurrence précédente.
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On peut faire la vérification du système de Steiner sur un ensemble à 7 élément donné dans la partie A avec la
correspondance évidente entre lettres de l’alphabet et nombres entiers.

6. La fonction suivante choisit au hasard p =
n(n− 1)

6
triplets et teste si l’ensemble de ces triplets forme un

système de Steiner pour E. Si oui, elle l’affiche.

7. La fonction suivante permet de trouver des systèmes de Steiner sur un ensemble à 7 éléments sans peine et en
utilisant un ordinateur peu puissant :

On peut se demander combien, il existe de systèmes de Steiner différents sur un ensemble donné. Si la question
vous intéresse, vous pouvez consulter l’article que l’on peut trouver sur internet : ”une question de Cayley relative
au problème des triades de Steiner” de Severin Bays.

Même en prenant Nmax grand et en laissant tourner le programme assez longtemps, il semble assez improbable
de trouver par cette recherche ”à l’aveugle” un système de Steiner sur un ensemble à 15 éléments.

Il est clair que les fonctions proposées peuvent être optimisées pour former de façon plus maligne l’ensemble de
triplets S dont on teste s’il est un système de Steiner. Cependant même avec quelques optimisations, il n’est pas
évident que l’on puisse trouver ainsi un système de Steiner sur un ensemble à 15 éléments.
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Acte III-15 est un nombre de Steiner

1. (a) Par définition les éléments des triplets de F appartiennent à F . Prenons une paire de F , notée {a, b}, les
deux éléments de la paire sont en particulier des éléments de E ainsi ils sont inclus dans un unique triplet
de E , noté {a, b, c}. La partie F étant supposée stable, ceci implique que c ∈ F . Les trois éléments du triplet
{a, b, c} sont dans F donc ce triplet appartient à F . Nous avons finalement démontré que toute paire de F
est incluse dans un unique triplet de F , ce qui démontre que :

F est un système de Steiner sur F

(b) On prend un élément de E quelconque a. On pose F = {a} qui est une partie stable de E. L’ensemble vide
est un système de Steiner sur F donc un sous-système de Steiner de E d’ordre 1.

(c) On prend un triplet de E : {a, b, c}. La partie F = {a, b, c} est stable et F = {a, b, c} est clairement un
système de Steiner sur F donc un sous-système de Steiner de E d’ordre 3.

2. On considère ai et aj deux éléments quelconques de P , éventuellement égaux avec (i, j) ∈ J0, s−1K2. Effectuons
la division euclidienne de −i− j par s, il existe un unique quotient q ∈ Z et un unique reste k ∈ J0, s− 1K tels
que :

−i− j = qs + k ⇔ i + j + k = −qs⇔ i + j + k ≡ 0 [s]

Ce qui démontre l’existence d’un unique k ∈ J0, s−1K et donc d’un unique élément de P tel que < ai, aj , ak >∈ P.

P est un pseudo système de Steiner de P

3. (a) Sur un ensemble à 3 éléments, il n’y a qu’une seul système de Steiner possible :

E = {{a, b, c}} et G = {{1, 2, 3}}

R n’ayant qu’un élément, on a r = 1 et on est dans le cas particulier où R = ∅. On a :

P = E \R = {b, c}

et par suite s = 2. Pour déterminer P, on suit la démarche de la question précédente en posant b = a0 et
c = a1. Étant donné que la somme des indices des listes de P doit être congrue à 0 modulo 2.

P = {< a0, a0, a0 >,< a0, a1, a1 >}

Par définition L = R ∪ (P ×G), ainsi :

L = {a, (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)}

Les éléments de L sont les suivants :

Type 1 : R est vide, il n’y a aucun triplet de type 1.

Type 2 : les triplets correspondants sont {a, (b, 1), (c, 1)}, {a, (b, 2), (c, 2)} et {a, (b, 3), (c, 3)}.
Type 3 : il n’y a aucun triplet car si l’on prend trois éléments de P , on ne peut avoir le triplet qui
appartient à E .

Type 4 : les triplets correspondants sont {(b, 1), (b, 2), (b, 3)}, {(b, 1), (c, 2), (c, 3)}, {(c, 1), (b, 2), (c, 3)} et
{(c, 1), (c, 2), (b, 3)}.

L = {{a, (b, 1), (c, 1)}, {a, (b, 2), (c, 2)}, {a, (b, 3), (c, 3)}, {(b, 1), (b, 2), (b, 3)}, {(b, 1), (c, 2), (c, 3)}, {(c, 1), (b, 2), (c, 3)}, {(c, 1), (c, 2), (b, 3)}}

Quitte à changer le nom des éléments de l’ensemble, on retrouve le système sur un ensemble à 7 éléments
donné dans la partie A.
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(b) Les ensembles R et P ×G sont disjoints à cause de la nature des éléments qui les composent, cela permet
de dire que :

Card(L) = Card(R) + Card(P ×G) = Card(R) + Card(P )× Card(G) = r + sm

Card(L) = r + sm

(c) Prenons deux éléments x et y distincts de L, notre but est de démontrer que cette paire est incluse dans
un unique triplet de L. Pour cela, il y a plusieurs cas à considérer.

i. Si x et y sont deux éléments de R, la paire {x, y} est incluse dans un unique triplet de type 1 puisque
R est un système de Steiner sur R. Cette paire ne peut être incluse dans un triplet de type 2, 3 ou 4
puisque certains éléments de ces triplets sont des couples.

ii. Si a ∈ R et y ∈ P × G, la paire {a, y} ne peut être incluse que dans un triplet de type 2. Notons
y = (b, g) ∈ P ×G. Étant donné que E est un système de Steiner sur E, il existe un unique c ∈ E tel
que {a, b, c} ∈ E . De plus c /∈ R, sinon comme a ∈ R, on aurait b ∈ R car R est stable, ce qui n’est pas
le cas : ce qui démontre que c ∈ P . Ainsi la paire {a, y} est incluse dans le triplet {a, (b, g), (c, g)} est
uniquement dans celui-ci.

iii. Si x et y sont deux éléments de P ×G, on pose x = (b, g2) ∈ P ×G et y = (c, g3) ∈ P ×G. Il y a trois
cas à considérer :

• Si g2 = g3, nécessairement b 6= c car x et y sont distincts. ll existe un unique a ∈ E tel que
{a, b, c} ∈ E . Dans le cas où a ∈ R, on a bien la paire {x, y} qui est incluse dans l’unique triplet de
type 2 : {a, (b, g2), (c, g2)}.
• En reprenant les notations du cas précédent, on a sinon a /∈ R donc a ∈ P . La paire {x, y} est alors
incluse dans l’unique triplet de type 3 : {(a, g2), (b, g2), (c, g2)}.
• Enfin si g2 6= g3. La paire {x, y} est incluse dans le triplet de type 4 : {(a′, g1), (b, g2), (c, g3)} où a′

est l’unique élément de P tel que < a′, b, c >∈ P et g1 est tel que {g1, g2, g3} ∈ G, il est également
unique.

iv. Finalement une paire quelconque d’éléments de L est incluse dans un unique triplet de L :

L est un système de Steiner sur L

4. D’après la question 3. de la partie I, il existe des systèmes de Steiner d’ordre 1 et 3, il est donc possible d’appliquer
la construction précédente avec m = 1 ou m = 3. D’après la question 1. de la partie III, il est possible de choisir
une partie stable ayant 1 éléments (dès que n ≥ 1) ou 3 éléments (dès que n ≥ 3), on peut ainsi prendre r = 1
ou r = 3.

(a) Si n est un nombre de Steiner, on applique la construction précédente en prenant E un ensemble à n
éléments, E un système de Steiner correspondant. On prend m = 3 (avec G un ensemble quelconque à 3
éléments) et r = 0. D’après la question 3.(b), l’ensemble L correspondant aura r+ms = r+m(n− r) = 3n
et L est un système de Steiner sur L.

(n ∈ J)⇒ (3n ∈ J)

(b) Si n est un nombre de Steiner, on applique la construction précédente en prenant E un ensemble à n
éléments, E un système de Steiner correspondant. On prend m = 3 (avec G un ensemble quelconque à 3
éléments) et r = 1 (ce qui est possible car n ≥ 1). D’après la question 3.(b), l’ensemble L correspondant
aura r + ms = r + m(n− r) = 1 + 3(n− 1) = 3n− 2 et L est un système de Steiner sur L.

(n ∈ J et n ≥ 1)⇒ (3n− 2 ∈ J)
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(c) Si n est un nombre de Steiner, on applique la construction précédente en prenant E un ensemble à n
éléments, E un système de Steiner correspondant. On prend m = 3 (avec G un ensemble quelconque à 3
éléments) et r = 3 (ce qui est possible car n ≥ 3). D’après la question 3.(b), l’ensemble L correspondant
aura r + ms = r + m(n− r) = 3 + 3(n− 3) = 3n− 6 et L est un système de Steiner sur L.

(n ∈ J et n ≥ 3)⇒ (3n− 6 ∈ J)

5. On sait déjà que 3 et 7 sont des nombres de Steiner, la question précédente nous permet de dire que :

9 = 3× 3 ∈ J

15 = 3× 7− 6 ∈ J

19 = 3× 7− 2 ∈ J

21 = 3× 7 ∈ J

25 = 3× 9− 2 ∈ J

27 = 3× 9 ∈ J

3, 7, 9, 15, 19, 21, 25, 27 sont des nombres de Steiner

6. (a) On a choisi :
E = {{a, b, c}, {a, d, e}, {a, f, g}, {b, d, f}, {b, e, g}, {c, d, g}, {c, e, f}}

Nous n’avons pas le choix pour G et R :

G = {{1, 2, 3}} et R = {{a, b, c}}

Avec les notations de la question 3., nous avons ainsi : r = 3, s = 4 et P = {d, e, f, g}.
(b) Il s’agit de former l’ensemble de tous les listes ordonnées possibles avec a0 = d, a1 = e, a2 = f et a3 = g

telles que la somme des indices soit congrue à 0 modulo 4. On obtient :

P = {< d, d, d >,< d, e, g >,< d, f, f >,< e, e, f >,< f, g, g >}

(c) Par définition L = R∪ (P ×G), ce qui nous donne :

L = {a, b, c, (d, 1), (d, 2), (d, 2), (e, 1), (e, 2), (e, 3), (f, 1), (f, 2), (f, 3), (g, 1), (g, 2), (g, 3)}

C’est comme voulu un ensemble à 15 éléments.

(d) D’après la question 1.(c) de l’acte II, le nombre de triplets d’un système de Steiner sur un ensemble à n

éléments vaut p =
n(n− 1)

6
. Ici n = 15, ce qui nous permet de dire que :

Card(L) = 35



MPSI2 DM9* corrigé 2025-2026

(e) Donnons les triplets type par type :

Type 1 : {a, b, c}
Type 2 :

{a, (d, 1), (e, 1)}
{a, (d, 2), (e, 2)}
{a, (d, 3), (e, 3)}

{a, (f, 1), (g, 1)}
{a, (f, 2), (g, 2)}
{a, (f, 3), (g, 3)}

{b, (d, 1), (f, 1)}
{b, (d, 2), (f, 2)}
{b, (d, 3), (f, 3)}

{b, (e, 1), (g, 1)}
{b, (e, 2), (g, 2)}
{b, (e, 3), (g, 3)}

{c, (d, 1), (g, 1)}
{c, (d, 2), (g, 2)}
{c, (d, 3), (g, 3)}

{c, (e, 1), (f, 1)}
{c, (e, 2), (f, 2)}
{c, (e, 3), (f, 3)}

Type 3 : Aucun. En effet, il n’y a pas de triplet de E qui ne contient ni a, ni b, ni c.

Type 4 :

{(d, 1), (d, 2), (d, 3)}
{(d, 1), (e, 2), (g, 3)}
{(d, 1), (e, 3), (g, 2)}
{(d, 2), (e, 1), (g, 3)}

{(d, 2), (e, 3), (g, 1)}
{(d, 3), (e, 2), (g, 1)}
{(d, 3), (e, 1), (g, 2)}
{(d, 1), (f, 2), (f, 3)}

{(f, 1), (d, 2), (f, 3)}
{(f, 1), (f, 2), (d, 3)}
{(e, 1), (e, 2), (f, 3)}
{(e, 1), (f, 2), (e, 3)}

{(f, 1), (e, 2), (e, 3)}
{(f, 1), (g, 2), (g, 3)}
{(g, 1), (f, 2), (g, 3)}
{(g, 1), (g, 2), (f, 3)}

J’ai trouvé ces triplets grâce au logiciel Python, vous trouverez en annexe les fonctions permettant cette
recherche.

Acte IV-Le cercle des 13 points

1. C’est une vérification rapide en notant d la distance, on a :

d(P0, P1) = 1, d(P0, P4) = 4, d(P1, P1) = 3, d(P0, P2) = 2, d(P2, P8) = 6, d(P0, P8) = 5

Ce qui démontre le résultat voulu.

2. Soit P et Q deux points distincts du cercle, la distance entre P et Q est un entier entre 1 et 6. D’après la question
précédente, cet entier correspond à la longueur d’un unique côté de l’un des triangles T1 ou T2. L’ensemble {P,Q}
est ainsi contenu dans un unique triangle obtenu à partir de T1 ou T2 par rotation. C’est-à-dire que la paire
{T1, T2} est incluse dans un unique triangle de E , ce qui constitue la définition d’un système de Steiner.

13 est un nombre de Steiner

3. On procède de même avec 7 points régulièrement espacés sur un cercle. La distance entre deux points vaut 1,
2 ou 3. On considère le triangle T = {P0, P1, P3}. Les longueurs des côtés de T valent 1, 2 et 3. De même que
dans la question précédente, on en déduit que l’ensemble des 7 triangles obtenus par rotation de T forment un
système de Steiner sur cet ensemble à 7 éléments.
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Acte V-Caractérisation des nombres de Steiner

1. (a) On a nécessairement c ∈ P car si c ∈ R alors b ∈ R (puisque R est stable et a ∈ R) ce qui est absurde.
Les entiers n et r sont des nombres de Steiner non nuls donc il sont impairs d’après la question 3. de
l’acte II. Ainsi s = n− r est un entier pair, pour créer P, il s’agit de suivre la construction de l’énoncé en
commençant par numéroter les éléments de P . Posons :

a0 = b et a s
2

= c

On a bien < b, b, b >∈ P car 0 + 0 + 0 ≡ 0 [s] et < b, c, c >∈ P car 0 +
s

2
+

s

2
≡ 0 [s].

(b) Puisque m ≥ 3, il est possible de choisir (g1, g2, g3) ∈ G3 tels que {g1, g2, g3} ∈ G. Considérons la partie de
L suivante :

L′ = {a, (b, g1), (c, g1), (b, g2), (c, g2), (b, g3), (c, g3)}

Cette partie de L admet un sous-système de Steiner inclus dans L, c’est le suivant :

L′ = {{a, (b, g1), (c, g1)}, {a, (b, g2), (c, g2)}, {a, (b, g3), (c, g3)}, {(b, g1), (b, g2), (b, g3)}, {(b, g1), (c, g2), (c, g3)},

{(c, g1), (b, g2), (c, g3)}, {(c, g1), (c, g2), (b, g3)}}
En effet les trois premiers triplets sont de type 2 et les quatre triplets suivants sont de type 3. On vérifie
que toute paire de L′ est incluse dans un unique triplet de L′.

L admet un sous-système de Steiner d’ordre 7

2. (a) Soit n ∈ T et E un ensemble ayant un système de Steiner d’ordre n admettant un sous-système de Steiner
d’ordre 7. La construction de la question 3. de l’acte III appliquée avec r = 0 et m = 3, nous donne un
système de Steiner d’ordre 3n dont E est un sous-système de Steiner qui admet lui-même un sous-système
de Steiner d’ordre 7. Ce qui démontre que 3n ∈ T .

(b) Soit n ∈ J avec n > 1, on sait d’après la question 4.(b) de l’acte III que 3n− 2 ∈ J et dans cette question
nous avions pris r = 1 et m = 3. D’après la question 1., dont les hypothèses sont alors vérifiées, on peut
en déduire que 3n− 2 ∈ T .

(c) C’est exactement le même raisonnement qu’à la question précédente. Dans la question 4.(c) de l’acte III,
nous avions pris r = 3 et m = 3, étant donnée que n > 3, les hypothèses de la question 1. sont vérifiées et
on obtient 3n− 6 ∈ T .

(d) Si n ∈ T , on applique la construction de la question 3. de l’acte III avec m = 3 et r = 7, pour obtenir un
système d’ordre 3n− 14 qui admet bien un sous-système d’ordre 7. Ce qui démontre que 3n− 14 ∈ T .

(e) Enfin si m ∈ S, on peut appliquer la construction avec n = 3 et r = 1 pour obtenir un système d’ordre
2m + 1 qui admet un sous-système d’ordre 7, ainsi 2m + 1 ∈ T .

3. L’un des nombres
n

3
,
n + 2

3
,
n + 6

3
,
n + 14

3
est un entier congru à 1 ou 3 modulo 6 si et seulement si :
n ≡ 3 ou 9 [18] ou
n ≡ 1 ou 7 [18] ou
n ≡ 15 ou 3 [18] ou
n ≡ 7 ou 13 [18]

Ceci démontre bien le résultat voulu car si n ≡ 1 ou 3 [6] alors n ≡ 1, 3, 7, 9, 13 ou 15 [18].
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4. Les entiers en questions sont ceux de l’ensemble : {15, 19, 21, 25, 27, 31, 33, 37, 39, 43}. On utilise systématiquement
la question 2. pour obtenir : 15 = 3× 7− 6 et 7 ∈ J, donc 15 ∈ T

19 = 3× 7− 2 et 7 ∈ J, donc 19 ∈ T

21 = 3× 7 et 7 ∈ T, donc 21 ∈ T

25 = 3× 9− 2 et 9 ∈ J, donc 25 ∈ T

27 = 2× 13 + 1 et 13 ∈ J, donc 27 ∈ T

31 = 3× 15− 14 et 15 ∈ T, donc 31 ∈ T

33 = 3× 13− 6 et 13 ∈ J, donc 33 ∈ T

37 = 3× 13− 2 et 13 ∈ J, donc 37 ∈ T

39 = 3× 15− 6 et 15 ∈ J, donc 39 ∈ T

43 = 3× 15− 2 et 15 ∈ J, donc 43 ∈ T

5. Si n ≥ 45 est un entier congru à 1 ou 3 modulo 6, les nombres
n

3
,
n + 2

3
,
n + 6

3
,
n + 14

3
sont compris entre 15

et n− 1 et l’un d’entre eux est un entier congru à 1 ou 3 modulo 6. On voit donc par récurrence que T contient
tous les entiers congrus à 1 ou 3 modulo 6 supérieurs à 15.

6. Les entiers congrus à 1 ou 3 modulo 6 qui sont majorés par 14 sont déjà connus comme étant des nombres de
Steiner et les suivants sont dans T . Il en résulte que :

n > 0 est un nombre de Steiner si et seulement n ≡ 1 ou 3 [6]
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Annexe

Voici les fonctions Python qui permette la construction du système de Steiner sur un ensemble à 15 éléments
demandée à la question 6. de l’acte III. Les éléments des ensembles sont des entiers naturels avec la conversion
suivante : a→ 1, b→ 2, c→ 3, d→ 4, e→ 5, f → 6, g → 7, 1→ 8, 2→ 9, 3→ 10.
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Voici ce que l’on obtient après exécution du script :


