- 1-Déterminer une primitive sur \mathbb{R} de $f: x \mapsto (x^2 + 3) \operatorname{ch}(x)$.
- 2-Soit $n \in \mathbb{N}$, déterminer une primitive sur \mathbb{R}_+^* de $x \mapsto x^n \ln(x)$.
- 3-Donner une primitive sur]-1,1[de la fonction Arcsin.
- 4-★ Déterminer une primitive de $f: x \mapsto \frac{3 + \ln(x)}{(4 + \ln(x))^2}$.

1-Déterminer une primitive sur \mathbb{R} de $f: x \mapsto (x^2 + 3) \operatorname{ch}(x)$.

Réponse : On intègre deux fois par parties afin de faire chuter le degré de la fonction polynomiale mise en jeu. Les fonctions polynomiales, les fonctions ch et sh sont bien de classe \mathcal{C}^1 sur \mathbb{R} , on obtient :

$$\int (x^2 + 3) \operatorname{ch}(x) dx = [(x^2 + 3) \operatorname{sh}(x)] - \int 2x \operatorname{sh}(x) dx$$

$$= (x^2 + 3) \operatorname{sh}(x) - [2x \operatorname{ch}(x)] + \int 2\operatorname{ch}(x) dx$$

$$= (x^2 + 3) \operatorname{sh}(x) - 2x \operatorname{ch}(x) + 2\operatorname{sh}(x)$$

$$= (x^2 + 5) \operatorname{sh}(x) - 2x \operatorname{ch}(x)$$

2-Soit $n \in \mathbb{N}$, déterminer une primitive sur \mathbb{R}_+^* de $x \mapsto x^n \ln(x)$.

Réponse : On pose :

$$u'(x) = x^n \qquad u(x) = \frac{x^{n+1}}{n+1}$$

$$v(x) = \ln(x) \qquad v'(x) = \frac{1}{x}$$
 Les fonctions u et v sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* .

$$\int x^n \ln(x) dx = \left[\frac{x^{n+1}}{n+1} \ln(x) \right] - \int \frac{x^n}{n+1} dx = \frac{x^{n+1}}{n+1} \ln(x) - \frac{x^{n+1}}{(n+1)^2}$$

3-Donner une primitive sur]-1,1[de la fonction Arcsin.

Réponse : On pose :
$$u'(t)=1 \qquad \qquad u(t)=t \\ v(t)=\operatorname{Arcsin}(t) \qquad v'(t)=\frac{1}{\sqrt{1-t^2}}$$

Les fonctions u et v sont de classe \mathcal{C}^1 sur]-1,1[et :

$$\int \mathsf{Arcsin}(t)dt = [t\mathsf{Arcsin}(t)] - \int \frac{t}{\sqrt{1-t^2}}dt = t\mathsf{Arcsin}(t) + \sqrt{1-t^2}$$

4-Déterminer une primitive de $f: x \mapsto \frac{3 + \ln(x)}{(4 + \ln(x))^2}$.

Réponse : La fonction f est définie sur $\mathbb{R}_+^*\setminus\{e^{-4}\}$. La fonction à intégrer est de la forme $\frac{u'v-uv'}{v^2}$ avec u(x)=x et $v(x)=4+\ln(x)$. Une primitive de f sur $\mathbb{R}_+^*\setminus\{e^{-4}\}$ est :

$$F: x \mapsto \frac{x}{4 + \ln(x)}$$